Q6
. If a and B are the zeroes of the polynomial x² - 6x + k, find the value of k, such that a²+b²= 40.
Answers
Answered by
5
Answer:
Given :
- A and B are the zeroes of the polynomial x² - 6x + k.
- A² + B² = 40.
To Find :
- The value of k.
Solution :
x² - 6x + k
a = 1 , b = -6 , c = k
We know that :
Sum of the zeroes = -b/a
⇒ A + B = -(-6)/1
⇒ A + B = 6
Product of the zeroes = c/a
⇒ AB = k/1
⇒ AB = k
Using Formula : A² + B² = (A + B)² - 2AB
⇒ 40 = 6² - 2k
⇒ 40 = 36 - 2k
⇒ 2k = 36 - 40
⇒ 2k = -4
⇒ k = -4/2
⇒ k = -2
- Hence, the value of k = -2
Similar questions