Q6. If Force (F), Velocity (v) and Acceleration(a) are taken as fundamental have units, then the linear momentum is represented as:
A) Fv2a-2
B)Fv3a-2
C)Fva-1
D)F2v3a-1
Answers
Given :-
▪ Force(F), Velocity(V) and acceleration(a) are fundamental units.
To Find :-
▪ Dimensional formula of linear momentum.
Solution :-
Let the dimensional formula of linear momentum in terms of Force, velocity, and acceleration be [ Fˣ Vʸ aᶻ ]
Where, x, y and z are real numbers.
We know, Dimensional formula of,
- Force = [ MLT⁻² ]
- Velocity = [ LT⁻¹ ]
- Acceleration = [ LT⁻² ]
- Linear Momentum = [ MLT⁻¹ ]
so,
⇒ [MLT⁻¹] = [F]ˣ [V]ʸ [a]ᶻ
⇒ [MLT⁻¹] = [MLT⁻²]ˣ [LT⁻¹]ʸ [LT⁻²]ᶻ
⇒ [MLT⁻¹] = [M]ˣ [L]ˣ [T]⁻²ˣ [L]ʸ [T]⁻ʸ [L]ᶻ [T]⁻²ᶻ
⇒ [MLT⁻¹] = [M]ˣ [L]⁽ˣ⁺ʸ⁺ᶻ⁾ [T]⁽⁻²ˣ⁻ʸ⁻²ᶻ⁾
Comparing the powers of the exponents, we have,
⇒ [M]¹ = [M]ˣ
⇒ x = 1 ...(1)
Also,
⇒ [L]¹ = [L]⁽ˣ⁺ʸ⁺ᶻ⁾
⇒ 1 + y + z = 1 [ from (1), x = 1 ]
⇒ y + z = 0 ...(2)
Further,
⇒ [T]⁻¹ = [T]⁽⁻²ˣ⁻ʸ⁻²ᶻ⁾
⇒ -1 = -2(1) - y - 2z [ from (1), x = 1 ]
⇒ 2 - 1 = -y - 2z
⇒ -y - 2z = 1 ...(3)
Adding (2), and (3)
⇒ y + z - y - 2z = 1 + 0
⇒ z - 2z = 1
⇒ -z = 1
⇒ z = -1
Substituting z = 1 in (2) , we get
⇒ y = 1
So,
⇒ [p] = [F]ˣ [V]ʸ [a]ᶻ
⇒ [p] = [F]¹ [V]¹ [a]⁻¹
⇒ [p] = [ FVa⁻¹ ]
Hence, Option (C) is correct.