Q6. Prove that: sin 20 sin 40 sin 60 sin 80 = 3/16
Answers
Answered by
1
Answer:
hope it helps you
please mark me as brainlist and please follow me
Attachments:
Answered by
6
Answer:
Step-by-step explanation:
sin20° sin40° sin60° sin80°
=>. sin 60° sin20° sin40° sin80°
=>. √3/2 sin 20° sin40° sin80°
=>. √3/2 ×1/2 [2sin20° sin40°] sin80°
=>. √3/4 [ cos(40-20) - cos(20+40) ] sin 80°
=>. √3/4 [cos20° - cos60°] sin80°
=>. √3/4 cos20°sin80° - √3/4 cos60°sin80°
=>. √3/4 × 1/2 [2 cos20° sin80°] - √3/4×1/2 sin80°
=>. √3/8 [sin(20+80) -sin(20-80)] - √3/8 sin80°
=>. √3/8 [sin100° - sin(-60°)] - √3/8 sin80°
=>. √3/8 sin100° - √3/8 sin(-60°) - √3/8 sin80°
=>. √3/8 sin(180 - 80) + √3/8 × √3/2 - √3/8 sin80°
=>. √3/8 sin80° + 3/16 - √3/8 sin80°
=>. 3/16 hence proved....
hope it helps you!!!
Similar questions
Math,
3 months ago
English,
3 months ago
Math,
3 months ago
Business Studies,
11 months ago
Science,
11 months ago