Math, asked by sajalgoyal785, 10 months ago

Q6lf
 \alpha
and
 \beta
are thee zeroes of the quadratic polynomial x
 {x}^{2}
+ x + 1.
Then
 \frac{1}{ \alpha } +  \frac{1}{ \beta } =

Answers

Answered by gjenagjena66
0

 \frac{ \alpha  +  \beta }{ \alpha  \times  \beta }  =  \frac{1}{ \alpha }  +  \frac{1}{ \beta }

 \alpha  +  \beta  =  \frac{ - b}{a}  =  - 1

 \alpha  \times  \beta  =  \frac{c}{a}  = 1

 \frac{ \alpha  +  \beta }{ \alpha  \times  \beta }  =  \frac{ - 1}{1}  =  \frac{1}{ \alpha }  +  \frac{1}{ \beta }

 \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  - 1

NOTE THAT:

a = cofficient \: of \:  {x}^{2}

b = cofficient of {x}

c = constant term

PLZZ DO MARK THIS AS BRAINLIEST.

IF ANY DOUBT,CAN BE SHARE IN COMMENT SECTION.

FOLLOW ME.

Similar questions