Q7. ABCD is a parallelogram. Find x, y, z (3
Marks)Show the working on a sheet of
paper with complete steps and reasons in
the bracket
C с
D
Pr
45°
2
80°
B
A
Attachments:
Answers
Answered by
19
Given :
- ABCD is a parallelogram
- Angle DAC = 45°
- Exterior angle = 80°
To find :
- x , y and z
Solution :
exterior angle + angle ABC = 180° (Linear pair)
80° + angle ABC = 180°
angle ABC = 180° - 80°
angle ABC = 100°
opposite angles of parallelogram are equal
x = angle ABC
- x = 100°
y = angle DAC (alternate interior angles)
- y = 45°
In ∆ADC
angle DAC + angle DCA + angle CDA = 180° (angle sum property of a triangle)
45° + angle DCA + 100° = 180°
145° + angle DCA = 180°
angle DCA = 180° - 145°
angle DCA = 35°
z = angle DCA (alternate interior angles)
- z = 35°
Therefore , the values of x , y and z respectively are 100° , 45° and 35° .
Answered by
14
Answer:
Given :
- ABCD is a parallelogram
- ∠DAC = 45°
- Exterior angle = 80°
To find :
- The value of x , y and z
Solution :
exterior angle + angle ABC = 180° (Linear pair)
=>80° + ∠ABC = 180°
=>∠ABC = 180° - 80°
=>∠ABC = 100°
- opposite angles of parallelogram are equal
=>x = angle ABC
=>x = 100°
=>y = ∠DAC [alternate interior angles]
=>y = 45°
In ∆ADC
- ∠ DAC + ∠DCA + ∠CDA = 180° [angle sum property of a triangle]
=>45° + ∠DCA + 100° = 180°
=>145° + ∠DCA = 180°
=>∠DCA = 180° - 145°
=>∠DCA = 35°
=>z = ∠DCA [alternate interior angles]
z = 35°
Therefore the values of:-
- x = 100°
- y = 45°
- z= 35°
Similar questions