Math, asked by missr3146, 1 month ago

Q7. Find the relation between x and y such that the point (x, y) is equidistant from the point (3,6) and (-3, 4).​

Answers

Answered by MяMαgıcıαη
90

Question:

  • Find the relation between x and y such that the point (x, y) is equidistant from the point (3,6) and (-3, 4).

Answer:

  • Relation b/w x & y is 3x + y = 5.

\quad{\huge{\boxed{\textsf{\textbf{\red{E}\green{X}\purple{P}\pink{L}\blue{A}\orange{N}A\gray{T}\red{I}\green{0}\purple{N}}}}}}

Given that:

  • Point (x, y) is equidistant from the point (3, 6) and (-3, 4).

To Find:

  • Relation between x and y?

Solution:

  • Identity to know before solving this question ::

\boxed{\sf{\red{(a - b)^2 = a^2 + b^2 - 2ab}}}

Formula used:

\boxed{\sf{\purple{Distance\:Formula = \sqrt{(x_{2} - x_{1})^2 + (y_{2} - y_{1})^2}\:\:}}}

\:

  • Finding distance b/w (x, y) & (3, 6) ::

By using distance formula we get,

\\ :\implies\footnotesize\sf \sqrt{(3 - x)^2 + (6 - y)^2}

\\ :\implies\footnotesize\sf \sqrt{(3)^2 + (x)^2 - (2\:\times\:3\:\times\:x) + (6)^2 + (y)^2 - (2\:\times\:6\:\times\:y)}

\\ :\implies\footnotesize\sf \sqrt{9 + x^2 - 6x + 36 + y^2 - 12y}

\\ :\implies\boxed{\bf{\sqrt{9 + x^2 - 6x + 36 + y^2 - 12y}}}

\:

  • Finding distance b/w (x, y) & (3, 6) ::

By using distance formula we get,

\\ :\implies\footnotesize\sf \sqrt{(-3 - x)^2 + (4 - y)^2}

\\ :\implies\footnotesize\sf \sqrt{(-3)^2 + (x)^2 - [2\:\times\:(-3)\:\times\:x] + (4)^2 + (y)^2 - (2\:\times\:4\:\times\:y)}

\\ :\implies\footnotesize\sf \sqrt{9 + x^2 - (-6x) + 16 + y^2 - 8y}

\\ :\implies\boxed{\bf{\sqrt{9 + x^2 + 6x + 16 + y^2 - 8y}}}

\:

Now,

According to the question,

  • Point (x, y) is equidistant from the point (3,6) & (-3, 4).

Therefore,

\\ :\implies\footnotesize\sf\sqrt{9 + x^2 - 6x + 36 + y^2 - 12y} = \sqrt{9 + x^2 + 6x + 16 + y^2 - 8y}

On squaring both sides we get,

\\ :\implies\footnotesize\sf (\sqrt{9 + x^2 - 6x + 36 + y^2 - 12y})^2 = (\sqrt{9 + x^2 + 6x + 16 + y^2 - 8y})^2

\\ :\implies\footnotesize\sf \cancel{9} + \cancel{x^2} - 6x + 36 + \cancel{y^2} - 12y = \cancel{9} + \cancel{x^2} + 6x + 16 + \cancel{y^2} - 8y

\\ :\implies\footnotesize\sf -6x + 36 - 12y = 6x + 16 - 8y

\\ :\implies\footnotesize\sf 36 - 16 = 6x - 8y + 6x + 12y

\\ :\implies\footnotesize\sf 6x + 6x - 8y + 12y = 20

\\ :\implies\footnotesize\sf 12x + 4y = 20

\\ :\implies\footnotesize\sf 4(3x + y) = 20

\\ :\implies\footnotesize\sf 3x + y = {\cancel{\dfrac{20}{4}}}

\\ :\implies\boxed{\bf{3x + y = 5}}

Relation b/w x & y is \large{\boxed{\bf{\red{3}\green{x} \purple{+} \pink{y} \blue{=} \orange{5}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by TrustedAnswerer19
42

 \pink{ \boxed{\boxed{\begin{array}{cc}\bf  \: The   \: relation \:  between \:  x \:  an d \:  y \:  is  \:  : \\  \\  \bf \: 3x + y = 5.\end{array}}}}

Given,

The point (x, y) is equidistant from the point (3,6) and (-3, 4).

To find :

Relation between x and y

Solution :

Let,

→ P(x,y)

→ Q(3,6)

→ R(-3,4)

we know that, the formula of distance between two point is :

 \rm \: d =  \sqrt{ {(x_1 - x_2)}^{2} +  {(y_1 - y_2)}^{2}  }  \:  \: unit

{ \boxed{\boxed{\begin{array}{cc} \rm \: distance \: between \:  P \:  \: and \:  \: R \: is \:  :  \:  \\  \\  \rm \: PR =  \sqrt{ {(x + 3)}^{2} +  {(y - 4)}^{2}  } \end{array}}}}

and

{ \boxed{\boxed{\begin{array}{cc}  \rm \: distance \: between \:  \: P \:  \: and \:  \: Q \: is \:  :  \\  \\ PQ =  \sqrt{ {(x - 3)}^{2}  +  {(y - 6)}^{2} } \end{array}}}}

According to the question,

 \small{ \boxed{ \begin{array}{cc}PQ = PR \\  \\  \rm \implies \:  \sqrt{ {(x - 3)}^{2}  +  {(y - 6)}^{2} }  =  \sqrt{ {(x + 3)}^{2} +  {(y - 4)}^{2}  }  \\  \\  \rm \implies \: { {(x - 3)}^{2}  +  {(y - 6)}^{2} }  =  { {(x + 3)}^{2} +  {(y - 4)}^{2}  }  \\  \\  \rm \implies \:  {x}^{2}  + 9 - 6x +  {y}^{2}  + 36 - 12y =  {x}^{2}  + 9 + 6x  +  {y}^{2}  + 16 - 8y \\  \\  \rm \implies \:  - 6x + 45 - 12y = 6x - 8y + 25 \\  \\  \rm \implies \:  - 6x - 6x - 12y + 8y = 25 - 45 \\  \\  \rm \implies \:  - 12x - 4y  =  - 20 \\  \\  \rm \implies \: 3x + y = 5 \end{array}}}

So,

The relation between x and y is = 3x + y = 5

Similar questions