Math, asked by saryka, 3 months ago

Q7. Find the sum of all integers satisfying the inequalities...​

Attachments:

Answers

Answered by amansharma264
74

EXPLANATION.

Sum of all integers satisfying the inequalities.

⇒ ㏒₅(x - 3) + 1/2㏒₅(3) < 1/2㏒₅(2x² - 6x + 7) and ㏒₃(x) + ㏒_(√3)(x) + ㏒_(1/3) (x) < 6.

As we know that,

⇒ (x - 3) > 0.

⇒ x > 3. - - - - - (1).

Equation (1).

⇒ ㏒₅(x - 3) + 1/2㏒₅(3) < 1/2㏒₅(2x² - 6x + 7).

⇒ ㏒₅(x - 3) < 1/2㏒₅(2x² - 6x + 7) - 1/2㏒₅(3).

As we know that,

Formula of :

⇒ ㏒ₐM - ㏒ₐN = ㏒ₐM/N.

Using this formula in equation, we get.

⇒ ㏒₅(x - 3) < 1/2㏒₅[2x² - 6x + 7/(3)].

⇒ 2㏒₅(x - 3) < ㏒₅[2x² - 6x + 7/3].

As we know that,

Formula of :

⇒ x㏒ₐN = ㏒ₐNˣ. (x any real number).

Using this formula in equation, we get.

⇒ ㏒₅(x - 3)² < ㏒₅[2x² - 6x + 7/3].

⇒ 3(x - 3)² < [2x² - 6x + 7].

As we know that,

Formula of :

⇒ (x - y)² = x² + y² - 2xy.

⇒ 3(x² + 9 - 6x) < [2x² - 6x + 7].

⇒ 3x² + 27 - 18x < 2x² - 6x + 7.

⇒ 3x² + 27 - 18x - 2x² + 6x - 7 < 0.

⇒ x² - 12x + 20 < 0.

Factorizes the equation into middle term splits, we get.

⇒ x² - 10x - 2x + 20 < 0.

⇒ x(x - 10) - 2(x - 10) < 0.

⇒ (x - 2)(x - 10) < 0.

As we know that,

Find the zeroes and the point on wavy curve method, we get.

⇒ x - 2 = 0.

⇒ x = 2.

⇒ x - 10 = 0.

⇒ x = 10.

We get,

⇒ x ∈ (2,10). - - - - - (2).

Equation (2).

⇒ ㏒₃(x) + ㏒_(√3)(x) + ㏒_(1/3)(x) < 6.

As we know that,

We can write equation as,

⇒ ㏒₃(x) + ㏒_(3)^1/2(x) + ㏒₃₍₋₁₎(x) < 6.

⇒ ㏒₃(x) + 2㏒₃(x) - ㏒₃(x) < 6.

⇒ 2㏒₃(x) < 6.

⇒ ㏒₃(x) < 3.

As we know that,

Formula of :

⇒ x㏒ₐN = ㏒ₐNˣ. (x any real number).

⇒ x < (3)³.

⇒ x < 27. - - - - - (3).

From equation (1) & (2) & (3), we get.

(1) = x > 3. - - - - - (1).

(2) = x ∈ (2,10). - - - - - (2).

(3) = x < 27. - - - - - (3).

⇒ x ∈ (3,4,5,6,7,8,9).

As we all know that,

From equation (1) x > 3 not equal to 3 that's why 3 is not considered.

⇒ x ∈ (4,5,6,7,8,9).

Number of integers = 6.

Sum of integers = 4 + 5 + 6 + 7 + 8 + 9 = 39.

                                                                                                                       

MORE INFORMATION.

Logarithmic inequality.

Let a is real number such that,

(1) = For a > 1 the inequality ㏒ₐx > ㏒ₐy & x > y are equivalent.

(2) = If a > 1 then ㏒ₐx < n ⇒ 0 < x < aⁿ.

(3) = If a > 1 then ㏒ₐx > n ⇒ x > aⁿ.

(4) = For 0 < a < 1 the inequality 0 < x < y & ㏒ₐx > ㏒ₐy are equivalent.

(5) = If 0 < a < 1 then ㏒ₐx < n ⇒ x > aⁿ.

Answered by ItzCuteAyush0276
23

Your answer was in Attachment...okay...

Attachments:
Similar questions