Math, asked by poojadua970, 9 months ago

Q7. If a and b are the zeroes of the
polynomial x2 -6x +k. Find the value of
k, if a +b = 12ab​

Answers

Answered by 0navn0
2

Answer:

k= 1/2

Step-by-step explanation:

a+b= 6

ab=k

12ab=a+b

12ab=6

ab=1/2

k=1/2

Hope this helps.

Answered by TheBrainlyWizard
75

\bf{\underline{\underline{Given}}}

\mathsf{\star\:\: Polynomial = x^{2} - 6x + k}

\mathsf{\star\:\: a\:\: and\:\:b\:\:are\:the\:zeroes}

\mathsf{\star\: \:a + b = 12ab}\\ \\

\bf{\underline{\underline{To\:find}}}

\mathsf{\star\: Value\:of\:k}\\ \\

\bf{\underline{\underline{Solution}}}

\mathtt{a + b = 12ab\:\:\: \rightarrow (1) \: [Given]}

\text{\underline{We know that}}\\

\mathsf{Sum\:of\:zeroes = \frac{-(x\:coefficient) }{x^{2}\: coefficient}}\\

\mathtt{a + b = \frac{-(-6)}{1}\: }\\

\mathtt{\implies \: a + b = 6 \:\:\: \rightarrow (2)}\\ \\

From (1) and (2) :

\mathtt{\implies\: 12ab = 6}\\

\mathtt{\implies\: ab = \frac{6}{12}}\\

\mathtt{\implies\: ab = \frac{1}{2}}\\ \\

\text{\underline{We know that}}\\

\mathsf{Product\:of\:zeroes = \frac{constant}{x^{2}\:coefficient}}\\

\mathtt{\implies\: ab = \frac{k}{1}}\\

\mathtt{\implies\: ab = k}\\

\fbox{\mathtt{\green{\implies\: \frac{1}{2} = k}}}\\

∴ Value of k = 1/2

Similar questions