Math, asked by voradhara05, 2 months ago

Q8. Denominator of a fraction is 4 less than its numerator. If 3 is subtracted from the numerator and denominator, the fraction obtained is 9/7 . Find the fraction​

Answers

Answered by PopularAnswerer01
19

Question:-

  • Denominator of a fraction is 4 less than its numerator. If 3 is subtracted from the numerator and denominator, the fraction obtained is 9/7 . Find the fraction.

To Find:-

  • Find the fraction.

Solution:-

  • Let the numerator be ' x '

  • Denominator be ' x - 4 '

According to the Question:-

\longrightarrow\sf \: \dfrac { x - 3 } { x - 4 - 3 } = \dfrac { 9 } { 7 }

\longrightarrow\sf \: \dfrac { x - 3 } { x - 7 } = \dfrac { 9 } { 7 }

\longrightarrow\sf \: 7( x - 3 ) = 9( x - 7 )

\longrightarrow\sf \: 7x - 21 = 9x - 63

\longrightarrow\sf \: 9x - 7x = 63 - 21

\longrightarrow\sf \: 2x = 42

\longrightarrow\sf \: x = \cancel\dfrac { 42 } { 2 }

\longrightarrow\sf \: x = 21

Hence ,

  • Numerator is 21

  • Denominator is x - 4 = 17
Answered by Anonymous
39

{ \large{ \underline{ \sf{ \pmb{Given...}}}}}

  • Denominator of a fraction is 4 less than its numerator.

  • If 3 is subtracted from the numerator and denominator, the fraction obtained is 9/7

{ \large{ \underline{ \sf{ \pmb{To \:  Find ...}}}}}

  • The original fraction respectively

{ \large{ \underline{ \sf{ \pmb{Solution ...}}}}}

Now,

  • Let's consider the numerator of the original fraction as x + 4

And,

  • Let the denominator of the original fraction be assumed as x

So, the original fraction will be,

 \longrightarrow \tt \:  \dfrac{x  + 4}{x}

Now,

  • According to the condition we get,

{ : \implies} \rm \frac{x + 4 - 3}{x - 3}  =  \frac{9}{7}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\ { : \implies} \rm  \frac{x + 1}{x - 3}  =  \frac{9}{7}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  { : \implies} \rm  \: 7(x + 1) = 9(x - 3) \\  \\  \\  { : \implies} \rm 7x + 7 = 9x - 27 \:  \:  \:  \:  \:  \:  \:  \\  \\   \\ { : \implies} \rm 7 = 9x - 27 - 7x \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \rm 7 = 9x - 7x - 27 \:  \:  \:  \:  \:   \:  \: \\  \\  \\ { : \implies} \rm 7 = 2x - 27 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \rm 2x = 7 + 27 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\{ : \implies} \rm 2x = 34 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  { : \implies} \rm  \: x = \cancel  \frac{34}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \\  \\  \\ { : \implies}{ \pink{ \underline{ \boxed{ \frak{x =17}}} \bigstar}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Now let's find the fraction

 \longmapsto \tt \:  \frac{x + 4}{x}  =  \frac{17 + 4}{17}  \\  \\   \\ \longmapsto \tt \:  \frac{21}{17}  \star  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:

  • Henceforth the fraction is 21/17

{ \large{ \underline{ \sf{ \pmb{Verification...}}}}}

  • Let's apply the second condition to check weather we went right

{ : \implies} \rm  \frac{21 - 3}{17 - 3}  =  \frac{9}{7}   \\  \\  \\ { : \implies} \rm  \frac{18}{14}  =  \frac{9}{7}  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \rm   \:  \frac{9}{7}  =  \frac{9}{7}  \:  \:  \:  \:  \:  \:  \:

  • Hence Verified...!!!

mddilshad11ab: Great¶
Similar questions