Q8. For below circuit diagram find-
i. ammeter reading
ii. Equivalent resistance
Given: R1 = 10 ohm, R2 = 40 ohm, R3 = 30 ohm R, = 20 ohm. Rs = 60 ohm
Answers
Given
A circuit with R₁ = 10 Ω , R₂ = 40 Ω , R₃ = 30 Ω , R₄ = 20 Ω , R₅ = 60 Ω
To Find
i. Ammeter reading ( Current )
ii. Equivalent resistance
Knowledge Required
If n resistors are connected in series ,
If n resistors are connected in series ,
Solution
R₁ , R₂ are connected in series ,
R₃ , R₄ , R₅ are too connected in parallel ,
Now , R₁₂ and R₃₄₅ are connected in series ,
ii. Equivalent resistance = 18 Ω
Apply Ohms Law for finding current in the circuit ,
i. Ammeter reading = 0.67 A
Answer:
Given
A circuit with R₁ = 10 Ω , R₂ = 40 Ω , R₃ = 30 Ω , R₄ = 20 Ω , R₅ = 60 Ω
To Find
i. Ammeter reading ( Current )
ii. Equivalent resistance
Knowledge Required
If n resistors are connected in series ,
\bf \pink{\bigstar\ \; R_{eq}=R_1+R_2+R_3+...+R_n}★ R
eq
=R
1
+R
2
+R
3
+...+R
n
If n resistors are connected in series ,
\bf \green{\bigstar\ \; \dfrac{1}{R_{eq}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}+...+\dfrac{1}{R_n}}★
R
eq
1
=
R
1
1
+
R
2
1
+
R
3
1
+...+
R
n
1
Solution
R₁ , R₂ are connected in series ,
\begin{gathered}\to \rm \dfrac{1}{R_{12}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}\\\\\to \rm \dfrac{1}{R_{12}}=\dfrac{1}{10}+\dfrac{1}{40}\\\\\to \rm \dfrac{1}{R_{12}}=\dfrac{5}{40}\\\\\to \rm \dfrac{1}{R_{12}}=\dfrac{1}{8}\\\\\to \bf R_{12}=8\ \text{\O}mega\ \; \bigstar\end{gathered}
→
R
12
1
=
R
1
1
+
R
2
1
→
R
12
1
=
10
1
+
40
1
→
R
12
1
=
40
5
→
R
12
1
=
8
1
→R
12
=8 Ømega ★
R₃ , R₄ , R₅ are too connected in parallel ,
\begin{gathered}\to \rm \dfrac{1}{R_{345}}=\dfrac{1}{R_3}+\dfrac{1}{R_4}+\dfrac{1}{R_5}\\\\\to \rm \dfrac{1}{R_{345}}=\dfrac{1}{30}+\dfrac{1}{20}+\dfrac{1}{60}\\\\\to \rm \dfrac{1}{R_{345}}=\dfrac{1}{20}+\dfrac{3}{60}\\\\\to \rm \dfrac{1}{R_{345}}=\dfrac{1}{20}+\dfrac{1}{20}\\\\\to \rm \dfrac{1}{R_{345}}=\dfrac{2}{20}\\\\\to \rm \dfrac{1}{R_{345}}=\dfrac{1}{10}\\\\\to \bf R_{345}=10\ \text{\O}mega\ \; \bigstar\end{gathered}
→
R
345
1
=
R
3
1
+
R
4
1
+
R
5
1
→
R
345
1
=
30
1
+
20
1
+
60
1
→
R
345
1
=
20
1
+
60
3
→
R
345
1
=
20
1
+
20
1
→
R
345
1
=
20
2
→
R
345
1
=
10
1
→R
345
=10 Ømega ★
Now , R₁₂ and R₃₄₅ are connected in series ,
\begin{gathered}\to \rm R_{12345}=R_{12}+R_{345}\\\\\to \rm R_{12345}=8+10\\\\\to \rm R_{12345}=18\ \text{\O}mega\\\\\bf \to \blue{R_{eq}=18\ \text{\O}mega\ \; \bigstar}\end{gathered}
→R
12345
=R
12
+R
345
→R
12345
=8+10
→R
12345
=18 Ømega
→R
eq
=18 Ømega ★
ii. Equivalent resistance = 18 Ω
Apply Ohms Law for finding current in the circuit ,
\begin{gathered}\to \bf V=IR_{eq}\\\\\to \rm 12=I(18)\\\\\to \rm I=\dfrac{2}{3}\\\\\to \rm I=0.666\ A\\\\\bf \to \red{I\cong 0.67\ A\ \; \bigstar}\end{gathered}
→V=IR
eq
→12=I(18)
→I=
3
2
→I=0.666 A
→I≅0.67 A ★
i. Ammeter reading = 0.67 A