Math, asked by saryka, 2 months ago

Q8. If a ∈ R and the equation -3(x - [x])² + 2(x - [x]) + a² = 0 (where, [x] denotes the greatest integer ≤ x) has no integral solution, then all possible values of a lie in the interval

(A) (-∞, - 2) ∪ (2, ∞)
(B) (-1, 0) ∪ (0, 1)
(C) (1, 2)
(D) (-2, -1)​

Answers

Answered by mathdude500
90

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\: -  \: 3(x - [x]) + 2(x - [x]) +  {a}^{2} = 0

Now, this above equation can be rewritten as

\rm :\longmapsto\: \: 3(x - [x])  - 2(x - [x]) - {a}^{2} = 0

Let assume that,

\rm :\longmapsto\:x - [x] = y -  -  - (1)

So, above equation reduces to

\rm :\longmapsto\: {3y}^{2} - 2y -  {a}^{2} = 0

Now, its a quadratic equation in y.

We know the solution of quadratic equation is given by Quadratic formula.

So,

\rm :\longmapsto\:y = \dfrac{ - ( - 2) \:  \pm \:  \sqrt{ {( - 2)}^{2}  - 4(3)(  - {a}^{2} )} }{2 \times 3}

\rm :\longmapsto\:y = \dfrac{2 \:  \pm \:  \sqrt{ 4 + 12 {a}^{2} } }{6}

\rm :\longmapsto\:y = \dfrac{2 \:  \pm \:  \sqrt{ 4(1 + 3{a}^{2} )} }{6}

\rm :\longmapsto\:y = \dfrac{2 \:  \pm \:  2\sqrt{1 + 3{a}^{2}} }{6}

\rm :\longmapsto\:y = \dfrac{1 \:  \pm \:  \sqrt{1 + 3{a}^{2}} }{3}

Now,

\rm :\longmapsto\:y = x - [x]

\bf\implies \:y =  \{x \}

On substituting the value of y, we get

\rm :\longmapsto\: \{x \} = \dfrac{1 \:  \pm \:  \sqrt{1 + 3{a}^{2}} }{3}

Now, we know,

\rm :\longmapsto\:0 \leqslant  \{x \} < 1

\rm :\longmapsto\:0 \leqslant  \dfrac{1 \:  \pm \:  \sqrt{1 + 3{a}^{2}} }{3} < 1

Now,

Consider,

\rm :\longmapsto\:  \dfrac{1 \:  \pm \:  \sqrt{1 + 3{a}^{2}} }{3} < 1

\rm :\longmapsto\:  1 \:  \pm \:  \sqrt{1 + 3{a}^{2}} < 3

\rm :\longmapsto\:  \:  \pm \:  \sqrt{1 + 3{a}^{2}} < 3 - 1

\rm :\longmapsto\:  \:  \pm \:  \sqrt{1 + 3{a}^{2}} < 2

On squaring both sides, we get

\rm :\longmapsto\:  \: 1 + 3{a}^{2} < 4

\rm :\longmapsto\:  \:  3{a}^{2} < 4 - 1

\rm :\longmapsto\:  \:  3{a}^{2} < 3

\rm :\longmapsto\:  \:  {a}^{2} < 1

\rm :\longmapsto\:  \:  {a}^{2}  - 1< 0

\rm :\longmapsto\:(a + 1)(a - 1) < 0

\bf\implies \: - 1 < a < 1

\bf\implies \:a \:  \in \: ( - 1, \: 1)

So, for non integral solutions,

\bf\implies \:a \:  \in \: ( - 1, \: 1) -  \{ 0\}

or

\bf\implies \:a \:  \in \: ( - 1, \: 0)  \cup \: (0, \: 1)

Hence,

 \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \underbrace{ \boxed{ \bf \: Option \: (B) \: is \: correct}}

Similar questions