Q8. In figure, if lines PQ and RS intersects at a point T, such that ZPRT = 40°, ZRPT
= 95º and ZTSQ = 75°, find ZSQT.
(3)
P
950
400
es
T
R
75°
Answers
Answered by
2
In PRT
By angle sum property of triangle
∠PRT+∠RPT+∠PTR=180∘
⇒90∘+45∘+∠PTR=180∘
⇒135∘+∠PTR=180∘
⇒∠PTR=180∘−135∘
⇒∠PTR=45∘.
Also,
∠STQ=∠PTR
∠STQ=45∘ (vertically opposite angles)
In ΔSQT
By angle sum property of triangle
∠SQT+∠STQ+∠TSQ=180∘
∠SQT+75∘+45∘=180∘
∠SQT+120∘=180∘
∠SQT=180∘−120∘
∠SQT=60∘
mark me as brainlist...
Answered by
0
Answer:
In PRT
By angle sum property of triangle
∠PRT+∠RPT+∠PTR=180
∘
⇒90
∘
+45
∘
+∠PTR=180
∘
⇒135
∘
+∠PTR=180
∘
⇒∠PTR=180
∘
−135
∘
⇒∠PTR=45
∘
.
Also,
∠STQ=∠PTR
∠STQ=45
∘
(vertically opposite angles)
In ΔSQT
By angle sum property of triangle
∠SQT+∠STQ+∠TSQ=180
∘
∠SQT+75
∘
+45
∘
=180
∘
∠SQT+120
∘
=180
∘
∠SQT=180
∘
−120
∘
∠SQT=60
∘
Similar questions