Math, asked by raghavag1404, 9 months ago

Q8. Prove that:
tan A/1-cot A+ cot A/1-tan A=1 +sec A cosec A​

Answers

Answered by chakrabortymadhusree
0

Step-by-step explanation:

The proof is given below.

Step-by-step explanation: We are given to prove the following trigonometric equality :

\dfrac{\tan A}{1\cot A}+\dfrac{\cot A}{1-\tan A}=1+\sec A\csc A.

1cotA

tanA

+

1−tanA

cotA

=1+secAcscA.

We will be using the following trigonometric formulas :

\begin{gathered}(i)~\tan\theta=\dfrac{\sin\theta}{\cos\theta},\\\\\\(ii)~\sin^2\theta+\cos^2\theta=1.\end{gathered}

(i) tanθ=

cosθ

sinθ

,

(ii) sin

2

θ+cos

2

θ=1.

The proof of the given equality is as follows :

\begin{gathered}L.H.S.\\\\\\\dfrac{\tan A}{1-\cot A}+\dfrac{\cot A}{1-\tan A}\\\\\\=\dfrac{\frac{\sin A}{\cos A}}{1-\frac{\cos A}{\sin A}}+\dfrac{\frac{\cos A}{\sin A}}{1-\frac{\sin A}{\cos A}}\\\\\\=\dfrac{\sin A}{\cos A}\times\dfrac{\sin A}{\sin A-\cos A}+\dfrac{\cos A}{\sin A}\times\dfrac{\cos A}{\cos A-\sin A}\\\\\\=\dfrac{\sin^2 A}{\cos A(\sin A-\cos A)}-\dfrac{\cos^2 A}{\sin A(\sin A-\cos A)}\\\\\\=\dfrac{\sin^3 A-\cos^3 A}{\sin A\cos A(\sin A-\cos A)}\\\\\\=\dfrac{(\sin A-\cos A)(\sin^2 A+\sin A\cos A+\cos^2 A)}{\sin A\cos A(\sin A-\cos A)}\\\\\\=\dfrac{\sin A\cos A+1}{\sin A\cos A}\\\\\\=1+\sec A\csc A\\\\=R.H.S.\end{gathered}

L.H.S.

1−cotA

tanA

+

1−tanA

cotA

=

1−

sinA

cosA

cosA

sinA

+

1−

cosA

sinA

sinA

cosA

=

cosA

sinA

×

sinA−cosA

sinA

+

sinA

cosA

×

cosA−sinA

cosA

Hence proved.

Answered by nkeerthana456
0

Answer:

Hope this will help you :                  

Attachments:
Similar questions