Math, asked by ajaykpi4461, 1 month ago

Q8.Solve the following problem:
{1/(9+√3)}+{1/3+√2)}​

Answers

Answered by vaishnavi1177
2

ɢɪᴠᴇɴ:

 \frac{1}{9 +  \sqrt{3} }  \:  \:  ,   \:  \: \frac{1}{3 +  \sqrt{2} }

ᴛᴏ ꜰɪɴᴅ:

Addition

ꜱᴏʟᴜᴛɪᴏɴ:

→ \frac{1}{9 +  \sqrt{3} }  =  \frac{1 }{9 +  \sqrt{3} }  \times  \frac{9 -  \sqrt{3} }{9 -  \sqrt{3} }  \\  \\ → \frac{1}{9 +  \sqrt{3} }  =  \frac{9 -  \sqrt{3} }{ {(9)}^{2} -  {( \sqrt{3}) }^{2}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \\  \\ → \frac{1}{9 +  \sqrt{3} }  =  \frac{9 -  \sqrt{3} }{81 - 3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ → \frac{1}{9 +  \sqrt{3} }  =   \frac{ 9 -  \sqrt{3} }{ 78  }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \\ \\

→ \frac{1}{3 +  \sqrt{2} }  = \frac{1}{3 +  \sqrt{2} }  \times  \frac{3 -  \sqrt{2} }{3 -  \sqrt{2} }  \\  \\ → \frac{1}{3 +  \sqrt{2} }  =  \frac{3 -  \sqrt{2} }{ {(3)}^{2}  -  {( \sqrt{2} )}^{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \\  \\ → \frac{1}{3 +  \sqrt{2} }  = \:  \:   \frac{3 -  \sqrt{2} }{9 - 2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ → \frac{1}{3 +  \sqrt{2} }  =  \frac{3 -  \sqrt{2} }{7}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \\  \\

 → \ \frac{1}{9 +  \sqrt{3} }  \:  \:   +  \:  \: \frac{1}{3 +  \sqrt{2} }   \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   =  \frac{9 -  \sqrt{3} }{78}  +  \frac{3 -  \sqrt{2} }{7}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  =  \frac{63 - 7 \sqrt{3} +234 - 78 \sqrt{2}   }{546}  \\ \\   =  \frac{297 - 7 \sqrt{3}  - 78 \sqrt{2} }{546  } \:  \:  \:  \:  \:  \:  \:  \:  \:   \:

Similar questions