Math, asked by saryka, 2 months ago

Q88. Simplify:

\sf{\dfrac{x^{-1}}{x^{-1}+y^{-1}}+\dfrac{x^{-1}}{x^{-1}-y^{-1}}}

Answers

Answered by user0888
195

Solution

To simplify the fraction, we should multiply \dfrac{xy}{xy} on both fractions.

Given: \dfrac{x^{-1}}{x^{-1}+y^{-1}} +\dfrac{x^{-1}}{x^{-1}-y^{-1}}

=\dfrac{xy(x^{-1})}{xy(x^{-1}+y^{-1})} +\dfrac{xy(x^{-1})}{xy(x^{-1}-y^{-1})}

=\dfrac{y}{y+x} +\dfrac{y}{y-x}

Taking LCM of the denominator,

=\dfrac{y(y-x)}{(y+x)(y-x)} +\dfrac{y(y+x)}{(y+x)(y-x)}

=\dfrac{y^2-xy+y^2+xy}{y^2-x^2}

=\dfrac{2y^2}{y^2-x^2}=\boxed{-\dfrac{2y^2}{x^2-y^2} }

Answered by sadnesslosthim
140

{\large{\underline{\underline{\pmb{\frak{Given:-}}}}}}

\sf \bullet \;\; \dfrac{x^{-1}}{x^{-1}+y^{-1}} + \dfrac{x^{-1}}{x^{-1}-y^{-1}}

{\large{\underline{\underline{\pmb{\frak{solution:-}}}}}}

\sf : \;\implies \dfrac{x^{-1}}{x^{-1}+y^{-1}} + \dfrac{x^{-1}}{x^{-1}-y^{-1}}

Solving first fraction :-

\sf : \implies \dfrac{1}{ \bigg\{1+\dfrac{1}{y} \; x \bigg\} \times \bigg\{ \dfrac{1}{x} \bigg\} \;x }

\sf : \; \implies \dfrac{1}{1+\dfrac{1}{y} \; x}

\sf : \; \implies \dfrac{1}{1+\dfrac{x}{y}}

\sf : \; \implies \dfrac{1}{\dfrac{y}{y} + \dfrac{x}{y}}

\sf : \; \implies \dfrac{1}{\dfrac{y+x}{y}}

\sf : \; \implies \dfrac{y}{y+x}

Solving second fraction :-

\sf : \; \implies \dfrac{1}{ \bigg\{ - \dfrac{1}{y}x + 1 \bigg\} \times \bigg\{ \dfrac{1}{x} \bigg\} x }

\sf : \; \implies \dfrac{1}{ - \dfrac{1}{y} \; x + y }

\sf : \; \implies \dfrac{1}{ - \dfrac{x}{y} + \dfrac{y}{y}}

\sf : \; \implies \dfrac{1}{ \dfrac{-x+y}{y}}

\sf : \; \implies \dfrac{y}{-x+y}

Now, solving both fractions together :-

\sf : \; \implies \dfrac{y}{y+x} + \dfrac{y}{-x+y}

\sf : \; \implies \dfrac{y(-x+y)}{(x+y)(-x+y)} + \dfrac{y(x+y)}{(x+y)(-x+y)}

\sf : \; \implies \dfrac{y(-x+y)+y(x+y)}{(x+y)(-x+y)}

\sf : \; \implies \dfrac{ -yx + y^{2} + yx + y^{2}}{(x+y)(-x+y)}

\sf : \; \implies \dfrac{2y^{2}}{(x+y)(-x+y)}

\boxed{\bf{ \leadsto \;\; \dfrac{2y^{2}}{-x^{2}+y^{2}}}}

Similar questions