Q9 pls ans fast ............
Attachments:
Answers
Answered by
4
Your answer is ----
LHS = sinA/(1+cosA)
multiply numerator and denometnator by (1-cosA) , we get
sinA(1-cosA)/1-cos^2A
°•° 1-cos^2A = sin^2A
So, LHS = sinA(1-cosA)/sin^2A
=>LHS = (1-cosA)/sinA
divide numerator and denometnator by sinA
=> LHS = (1/sinA)-(cosA/sinA)/(sinA/sinA)
=> LHS = cosecA - cotA (°•° 1/sinA = cosecA and cosA/sinA = cotA)
=> LHS = cosecA-cotA = RHS
Hence proved
LHS = sinA/(1+cosA)
multiply numerator and denometnator by (1-cosA) , we get
sinA(1-cosA)/1-cos^2A
°•° 1-cos^2A = sin^2A
So, LHS = sinA(1-cosA)/sin^2A
=>LHS = (1-cosA)/sinA
divide numerator and denometnator by sinA
=> LHS = (1/sinA)-(cosA/sinA)/(sinA/sinA)
=> LHS = cosecA - cotA (°•° 1/sinA = cosecA and cosA/sinA = cotA)
=> LHS = cosecA-cotA = RHS
Hence proved
Answered by
3
to prove: sinA/1+cosa=cosecA-cotA
taking l.h.s. ,sinA/1+cosa
multiply numerator and denominator by (1 -cosa)
so. sinA(1-cosa)/1+cosa(1-cosa)
= sinA(1-cosa)/1-cos^2a
using identity sin^2a+cos^2a=1
= sinA(1-cosa)/sin^2a
= 1/sina-cosa/sinA
coseca-cotA. = RHS
taking l.h.s. ,sinA/1+cosa
multiply numerator and denominator by (1 -cosa)
so. sinA(1-cosa)/1+cosa(1-cosa)
= sinA(1-cosa)/1-cos^2a
using identity sin^2a+cos^2a=1
= sinA(1-cosa)/sin^2a
= 1/sina-cosa/sinA
coseca-cotA. = RHS
Similar questions