Math, asked by saryka, 2 days ago

Q9. Solve |x + 1| ≥ 4 graphically.​

Answers

Answered by mathdude500
28

\large\underline{\sf{Solution-}}

Given that,

\rm \:  |x + 1|  \geqslant 4 \\

We know,

\boxed{ \rm{ \: |x| \geqslant y \: \rm\implies \:x \leqslant  - y \:  \: or \:  \: x \geqslant y \: }} \\

So, using this definition of Modulus inequality, we have

\rm \: x + 1 \leqslant  - 4 \:  \: or \:  \: x + 1 \geqslant 4

\rm \: x  \leqslant  - 4 - 1 \:  \: or \:  \: x \geqslant 4 - 1 \\

\rm \: x \leqslant  - 5 \:  \: or \:  \: x \geqslant 3 \\

\rm\implies \:x \:  \in \: ( -  \infty , - 5] \:  \cup \: [3, \infty ) \\

\rule{190pt}{2pt}

Additional information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ |x|  < y\rm\implies \: - y < x < y}\\ \\ \bigstar \: \bf{ |x|  \leqslant y\rm\implies \: - y \leqslant x \leqslant y}\\ \\ \bigstar \: \bf{ |x|  > y\rm\implies \: x <  - y \: or \: x > y} \: \\ \\ \bigstar \: \bf{ |x| \geqslant y\rm\implies \:x \leqslant  - y \: or \: x \geqslant y}\\ \\ \bigstar \: \bf{ |x - a|  < y\rm\implies \:a - y < x < a + y}\\ \\ \bigstar \: \bf{ |x - a|  \leqslant y\rm\implies \:a - y \leqslant x \leqslant a + y}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Answered by llPRINCESSSOFIAll
3

Answer:

Given 

x≤4,xεN  

The solution set ={1,2,3,4} 

These four numbers are shown indicating with thick dot on the number line.

hope it will help you

Attachments:
Similar questions