Math, asked by saryka, 1 month ago

QB. Find the area of the region bounded by the curves y = x², y = |2 - x²| and y = 2, which lies to the right of the line x = 1.​

Answers

Answered by mathdude500
126

\large\underline{\sf{Solution-}}

Given curves are

\rm :\longmapsto\:P_1 : y =  {x}^{2}

\rm :\longmapsto\:P_2 : y =   |2 -  {x}^{2} |

\rm :\longmapsto\:L_1 : y = 2

\rm :\longmapsto\:L_2 : x= 1

Now,

\rm :\longmapsto\:P_1 : y =  {x}^{2}

represents the parabola whose vertex is (0, 0).

\rm :\longmapsto\:P_2 : y =   |2 -  {x}^{2} |

represents the downward parabola whose vertex is at (0, 2) and intersects the x - axis at

\rm :\longmapsto\:( -  \sqrt{2},0) \: and \: ( \sqrt{2},0)

Now,

\begin{gathered}\begin{gathered}\bf\:  |2 -  {x}^{2} |  = \begin{cases} &\sf{ {x}^{2}  - 2 \:  \: if \: x <  -  \sqrt{2} } \\ &\sf{2 -  {x}^{2}  \: if \:  -  \sqrt{2} \leqslant x \leqslant  \sqrt{2}  }\\ &\sf{ {x}^{2}  - 2 \: if \: x >  \sqrt{2} } \end{cases}\end{gathered}\end{gathered}

\rm :\longmapsto\:L_1 : y = 2

is a line parallel to x - axis passes through (0, 2).

Required area bounded between the curves with respect to x -axis is given by

\rm \:  \:  =  \:\displaystyle\int_1^ {\sqrt{2}}(P_1 - P_2)dx \:  +  \: \displaystyle\int_{ \sqrt{2}} ^ 2(L_1 - P_2)dx

\rm \:  \:  =  \:\displaystyle\int_1^ {\sqrt{2}}( {x}^{2}  -(2 -  {x}^{2} ))dx \:  +  \: \displaystyle\int_{ \sqrt{2}} ^ 2(2 - ( {x}^{2} - 2) )dx

\rm \:  \:  =  \:\displaystyle\int_1^ {\sqrt{2}}( 2{x}^{2}  -2 )dx \:  +  \: \displaystyle\int_{ \sqrt{2}} ^ 2(4 - {x}^{2})dx

\rm \:  \:  =  \: \bigg[\dfrac{ {2x}^{3} }{3}   - 2x\bigg]_1^{ \sqrt{2}} + \bigg[\dfrac{ 4x - {x}^{3} }{3}   \bigg]_{ \sqrt{2}}^{2}

\rm \:  \:  =  \:\dfrac{4 \sqrt{2} }{3}  - 2 \sqrt{2} - \dfrac{2}{3} + 2 + 8 - \dfrac{8}{3} - 4 \sqrt{2} + \dfrac{2 \sqrt{2} }{3}

\rm \:  \:  =  \:\dfrac{20}{3} - 4 \sqrt{2}  \: sq. \: units

Formula Used :-

\rm :\longmapsto\:Area \: w.r.t \: x \: axis = \displaystyle\int_a^b \: y \: dx

\rm :\longmapsto\:\displaystyle\int \: k \: dx = kx \:  +  \: c

\rm :\longmapsto\:\displaystyle\int \:  {x}^{n}  \: dx = \dfrac{ {x}^{n + 1} }{n + 1}  \:  +  \: c

Attachments:
Similar questions