Math, asked by dibakarswain7626, 1 year ago

Qid : 61 - if a cone is divided into two parts by drawing a plane through the midpoints of its axis, then the ratio of the volume of the 2 parts of the cone is

Answers

Answered by VelvetBlush
6

Let OAB be the cone of the base radius r cm and height h cm. Let P be the midpoint ot it's axis OQ, Then,

\sf{OP=\frac{1}{2}OQ=\frac{h}{2}cm}

\sf{∆OQB~∆OPD}

\sf{\frac{OQ}{QB}=\frac{OP}{PD}}

\sf{\frac{h}{r}=\frac{h/2}{PD}}

\sf{PD=\frac{r}{2}cm}

The plane CD divides the cone OAB into a smaller cone OCD and a frustum of cone ABDC

\longrightarrow\sf{\frac{Volume\:of\:the\:small\:cone}{Volume\:of\:the\:frustum\:of\:cone}}

\longrightarrow\sf{\frac{ \frac{1}{3}\pi  { (\frac{r}{2})( \frac{h}{2} ) }^{2} }{ \frac{1}{3}\pi (\frac{h}{2} )( {r}^{2}   +  {( \frac{r}{2}) + }^{2}   + r \times  \frac{r}{2} )} }

\longrightarrow\sf{\frac{ \frac{ {r}^{2} }{4} }{ {r}^{2}(1 +  \frac{1}{4}  +  \frac{1}{2})  } }

\longrightarrow\sf{ \frac{1}{4}  \times  \frac{4}{7}  =  \frac{1}{7} }

\longrightarrow\sf{1:7}

Attachments:
Similar questions