Math, asked by Rahulgenius9436, 1 year ago

Qid : 62 - if a3 + b3 = 35 and ab = 6, then what is the value of a + b?3

Answers

Answered by Anonymous
1
☆☆your answer is here☆☆

solution:--

a³+b³=(a+b)³-3ab(a+b);
35=(a+b)³-3×6(a+b);
35=(a+b){(a²+2ab+b²)-18)
35=(a+b)(a²+b²)+12-18;
35=-6{a(a+b)+b(b-a)}(a+b)
41=a+b
Answered by hotelcalifornia
2

Answer:

Thus the value of a + b is 5

To find:

Value of a + b = ?

Solution:

Given : a^3 + b^3 = 35 and ab = 6

Let us take the value of (a+b)=x

We know that the value of  

( a + b ) ^ { 3 } = a ^ { 3 } + b ^ { 3 } + 3 a b ( a + b )

Substituting (a + b) = x in the above expression, we get,

( x ) ^ { 3 } = a ^ { 3 } + b ^ { 3 } + 3 a b ( x )

Substituting the value of ab = 6 and a^3 + b^3 = 35 in the above derived expression

\begin{array} { c } { x ^ { 3 } = 35 + 3 \times 6 ( x ) } \\\\ { x ^ { 3 } = 35 + 18 x } \\\\ { x ^ { 3 } - 18 x = 35 } \\\\ { x \left( x ^ { 2 } - 18 \right) = 35 } \\\\ { x \left( x ^ { 2 } - 18 \right) = 5 \times 7 } \end{array}

Let us take

x=5

And

\begin{array} { c } { x ^ { 2 } - 18 = 7 } \\\\ { x ^ { 2 } = 7 + 18 } \\\\ { x ^ { 2 } = 25 } \\\\ { x = 5 } \end{array}

Thus, the value of x is 5.

x=a+b=5

Thus, the value of a + b is equal to 5

Similar questions