Math, asked by renusinghal9897, 6 months ago


Qns5. Find the equation of the hyperbola with vertices (0,±√11/2) and eccentricity 6/√11.

Answers

Answered by Swarup1998
1

Given data:

The vertices of the hyperbola are (0,\pm \sqrt{\frac{11}{2}})

and eccentricity, e=\frac{6}{\sqrt{11}}

To find: the eqn. of the hyperbola

Step-by-step explanation:

Here vertices are (0,\pm \sqrt{\frac{11}{2}})

\Rightarrow (0,\pm b)\equiv (0,\pm \sqrt{\frac{11}{2}})

Then b=\sqrt{\frac{11}{2}}

Here, e=\frac{6}{\sqrt{11}}

Now, a^{2}=b^{2}(e^{2}-1)

\Rightarrow a^{2}=\frac{11}{2}\:(\frac{36}{11}-1)

\Rightarrow a^{2}=\frac{25}{2}

Thus the equation of the hyperbola is

\quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1

\Rightarrow \frac{x^{2}}{\frac{25}{2}}-\frac{y^{2}}{\frac{11}{2}}=-1

\Rightarrow 22x^{2}-50y^{2}=275

Answer:

The required hyperbola is

\quad\quad 22x^{2}-50y^{2}=275

NOTE:

If the vertices are (0,\pm \frac{\sqrt{11}}{2}), kindly approach with the similar method as solved above.

Similar questions