Math, asked by snehajha86, 1 year ago

QT and RS are medians of a triangle PQR right angled at P prove that a (QT square + RS square ) = 5 QR square​

Answers

Answered by MaheswariS
25

The question should be

QT and RS are medians of a triangle PQR right angled at P prove that 4(QT^2+ RS^2) = 5 QR^2

\textsf{Given:}

\textsf{QT and RS are medians}

\mathsf{PT=\frac{PR}{2}\;\;\&\;\;PS=\frac{PQ}{2}}

\textsf{In $\triangle$PQT, Using pythagoras theorem}

\mathsf{QT^2=PT^2+PQ^2}.....(1)

\textsf{In $\triangle$PSR, Using pythagoras theorem}

\mathsf{RS^2=PS^2+PR^2}......(2)

\textsf{Consider}

\mathsf{QT^2+ RS^2}

\mathsf{=(PT^2+PQ^2)+(PS^2+PR^2)}

\mathsf{=\frac{PR^2}{4}+PQ^2+\frac{PQ^2}{4}+PR^2}

\mathsf{=(\frac{PR^2}{4}+PR^2)+(\frac{PQ^2}{4}+PQ^2)}

\mathsf{=\frac{5\;PR^2}{4}+\frac{5\;PQ^2}{4}}

\mathsf{=\frac{5}{4}[PR^2+PQ^2]}​            (\because\;\mathsf{QR^2=PR^2+PQ^2})

\mathsf{=\frac{5}{4}QR^2}

\implies\mathsf{QT^2+ RS^2=\frac{5}{4}QR^2}

\implies\boxed{\mathsf{4(QT^2+ RS^2)=5\,QR^2}}

Attachments:
Answered by renuparashar321
2

Answer:

please mark me as brainlist

Attachments:
Similar questions