Math, asked by BRAINLYxKIKI, 1 month ago

★ Quadratic Equation ★

1: Find the roots of the following quadratic equations by the method of completing the squares :

\boxed{\sf{\red{ 4x² \:+\: 4 \sqrt{3}x \:+\: 3 \:=\: 0 }}}

\boxed{\sf{\red{ 2x² \:+\: x \:-\: 4 \:=\: 0 }}}
ㅤㅤ
‡ Spam not allowed ✖️
‡ Appreciation for quality answerers ✔️​

Answers

Answered by psrismaran
1

Answer:

Hey mate here is the answer

Step-by-step explanation:

plz check out the answer from image

plz mark me as brainliest and follow

tq☺️

Attachments:
Answered by mathdude500
7

Answer :- 1

Given Quadratic Equation is

\rm :\longmapsto\: {4x}^{2} + 4 \sqrt{3}x + 3 = 0

Step :- 1 Shift the constant term on RHS.

\rm :\longmapsto\: {4x}^{2} + 4 \sqrt{3}x= -  \: 3

Step :- 2 Make the coefficient of x² unity, So Divide both sides by 4.

\rm :\longmapsto\: {x}^{2} +\sqrt{3}x= -  \: \dfrac{3}{4}

Step :- 3 Add square of half the coefficient of x on both sides,

\rm :\longmapsto\: {x}^{2} +\sqrt{3}x +  {\bigg(\dfrac{ \sqrt{3} }{2}  \bigg) }^{2} = -  \: \dfrac{3}{4} +  {\bigg(\dfrac{ \sqrt{3} }{2}  \bigg) }^{2}

\rm :\longmapsto\: {x}^{2} +2 \times\dfrac{ \sqrt{3} }{2} \times x +  {\bigg(\dfrac{ \sqrt{3} }{2}  \bigg) }^{2} = - \:\dfrac{3}{4}+\dfrac{3}{4}

\rm :\longmapsto\:{\bigg(x + \dfrac{ \sqrt{3} }{2}  \bigg) }^{2} = 0

\rm :\longmapsto\:{\bigg(x + \dfrac{ \sqrt{3} }{2}  \bigg) } = 0

\bf\implies \:x =  -  \: \dfrac{ \sqrt{3} }{2}

Answer :- 2

Given Quadratic Equation is

\rm :\longmapsto\: {2x}^{2} + x - 4 = 0

Step :- 1 Shift the constant term on RHS.

\rm :\longmapsto\: {2x}^{2} + x  = 4

Step :- 2 Make the coefficient of x² unity, So Divide both sides by 2.

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{2} x  = 2

Step :- 3 Add square of half the coefficient of x on both sides,

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{2} x +  {\bigg(\dfrac{1}{4}  \bigg) }^{2} = 2 +  {\bigg(\dfrac{1}{4}  \bigg) }^{2}

\rm :\longmapsto\: {x}^{2} +2 \times  \dfrac{1}{4} x +  {\bigg(\dfrac{1}{4}  \bigg) }^{2} = 2 +  {\bigg(\dfrac{1}{16}  \bigg) }

\rm :\longmapsto\:{\bigg(x + \dfrac{1}{4}\bigg) }^{2} = \dfrac{32 + 1}{16}

\rm :\longmapsto\:{\bigg(x + \dfrac{1}{4}\bigg) }^{2} = \dfrac{33}{16}

\rm :\longmapsto\:{\bigg(x + \dfrac{1}{4}\bigg) }=  \pm \: \dfrac{ \sqrt{33} }{4}

\rm :\longmapsto\:x= -  \:  \dfrac{1}{4} \pm \: \dfrac{ \sqrt{33} }{4}

\bf\implies \:x = \dfrac{ - 1 +  \sqrt{33} }{4}  \:  \:  \: or \:  \:  \: \dfrac{ - 1 -  \sqrt{33} }{4}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac

Similar questions