quadratic equation(8x²+10x+56=7x²+67)
Answers
Answered by
0
Answer :
x = -11 , 1
Solution :
- Given : 8x² + 10x + 56 = 7x² + 67
- To find : x = ?
We have ;
=> 8x² + 10x + 56 = 7x² + 67
=> 8x² - 7x² + 10x + 56 - 67 = 0
=> x² + 10x - 11 = 0
=> x² + 11x - x - 11 = 0
=> x(x + 11) - (x + 11) = 0
=> (x + 11)(x - 1) = 0
=> Either (x + 11) = 0 or (x - 1) = 0
• If x + 11 = 0 , then x = -11 .
• If x - 1 = 0 , then x = 1 .
Hence x = -11 , 1 .
Alternative method :
Using quadratic formula .
We have ,
=> 8x² + 10x + 56 = 7x² + 67
=> 8x² - 7x² + 10x + 56 - 67 = 0
=> x² + 10x - 11 = 0
Comparing the quadratic equation with the general quadratic equation ax² + bx + c = 0 , we have ;
a = 1
b = 10
c = -11
Now ,
The discriminant of the quadratic equation will be ;
=> D = b² - 4ac
=> D = 10² - 4•1•(-11)
=> D = 100 + 44
=> D = 144
Now ,
=> x = (-b ± √D)/2a
=> x = (-10 ± √144)/2•1
=> x = (-10 ± 12)/2
=> x = (-10 - 12)/2 , (-10 + 12)/2
=> x = -22/2 , 2/2
=> x = -11 , 1
Hence x = -11 , 1 .
Similar questions