Math, asked by iamlearner17, 9 months ago

Quadratic Equation class 10 ​

Attachments:

Answers

Answered by acekaplayer
1

Step-by-step explanation:

by quadratic equation we get 2 answers 2root 2 and second solution is -root2 /2

Attachments:
Answered by Mysterioushine
16

\huge\rm\underline\purple{SOLUTION:}

 \sqrt{2}  {x}^{2}  - 3x - 2 \sqrt{2}  = 0 \\  \\  the \: general \: form \: of \:  a \: quadratic \: equation \: is \\  \\ ax {}^{2} + bx + c = 0 \\  \\ and \: x =   \frac{ - b +  \sqrt{ {b}^{2} - 4ac } }{2a} (or)x =  \frac{ - b -  \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\ conparing \: the \: equation \: with \: general \: form \: of \:  \\ equation \:   we \: get \\  \\ a =  \sqrt{2} \:  and \: b = 3 \: and \: c =  - 2 \sqrt{2}  \\  \\  =  > x =  \frac{ - 3 +  \sqrt{9 - 4( \sqrt{2})( - 2 \sqrt{2} ) } }{2( \sqrt{2)} }  \: (or) \\  \\ x =  \frac{ - 3 -  \sqrt{9 - 4( \sqrt{2} )( - 2 \sqrt{2)} } }{2( \sqrt{2} )}  \\  \\  =  > x =  \frac{ - 3 \sqrt{9 - 4( - 4)} }{2 \sqrt{2} } (or) \\  \\  x =  \frac{ - 3  -  \sqrt{9 - 4( - 4)} }{2 \sqrt{2} }  \\  \\ =  >  x =  \frac{  -  3 \sqrt{9 + 16} }{2 \sqrt{2} }  \: (or) \: x =  \frac{ - 3 -  \sqrt{9 + 16} }{2 \sqrt{2} }  \\  \\  =  > x =  \frac{ - 3 +  \sqrt{25} }{2 \sqrt{2} } \:  (or) \: x =  \frac{ - 3 -  \sqrt{25} }{2 \sqrt{2} } \\  \\  =  > x =  \frac{ - 3 + 5}{2 \sqrt{2} } \:  (or) \: x =  \frac{ - 3 - 5}{2 \sqrt{2} }  \\  \\  =  > x =  \frac{2}{2 \sqrt{2} }  \: (or) \: x =  \frac{ - 8}{2 \sqrt{2} }  \\  \\  =  > x =  \frac{1}{ \sqrt{2} }  \: (or) \: x =  \frac{ - 4}{ \sqrt{2} }  \\  \\ rationalizing \: the \: denominator \\  \\  =  > x =  \frac{ \sqrt{2} }{2}  \: (or) \: x =   - 2 \sqrt{2}

Similar questions