Math, asked by electrodragon97178, 17 days ago

quadratic equation class 10
pls solve with detailed explanation i have a lot doubt about it​

Attachments:

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given that,

\rm \:  \alpha , \:  \beta  \: are \: zeroes \: of \: the \: polynomial \:  {2x}^{2} - 4x + 5 \\

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm\implies \: \alpha  +  \beta  =  - \dfrac{( - 4)}{2}  =  2 \\

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm\implies \: \alpha  \beta  =  \dfrac{5}{2} \\

Now, Consider

\rm \:  { \alpha }^{2}  +  { \beta }^{2}

\rm \:  =  { \alpha }^{2}  +  { \beta }^{2}  + 2 \alpha  \beta  - 2 \alpha  \beta

\rm \:  =  \:  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta

\rm \:  =  \:  {2}^{2}  - 2 \times \dfrac{5}{2}

\rm \:  =  \: 4 - 5

\rm \:  =  \:  -  \: 1 \\

Hence,

\rm\implies \: \:\boxed{\tt{   \: \rm \:  { \alpha }^{2}  +  { \beta }^{2}  =  \:  -  \: 1 \: }} \\

So, Option (c) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\rm \:  { \alpha }^{3} +  { \beta }^{3}  =  {( \alpha  +  \beta )}^{3} - 3 \alpha  \beta ( \alpha  +  \beta ) \:  \\

\rm \:  {( \alpha  -  \beta )}^{2}  =  {( \alpha  +  \beta )}^{2}  - 4 \alpha  \beta  \\

\rm \:  { \alpha }^{4} +  { \beta }^{4} =  {\bigg( {( \alpha  +  \beta )}^{2} - 2 \alpha  \beta  \bigg) }^{2}  - 2 {( \alpha  \beta )}^{2}  \\

Answered by jaswasri2006
5

\underline{ \pink{ \rm GIVEN \:  \: DATA\: \: : }}

 \rm p(x) = 2 {x}^{2}  - 4x + 5

 \rm  \alpha  \:  \: and \:  \:  \beta  \:  \:  \: are \:  \:  \: zeros \:  \:  \: of \:  \: p(x)

 ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄

\underline{ \purple{ \rm TO  \:  \: FIND  \: \: : }}

 \rm the \:  \: value \:  \: of \:  \:  { \alpha }^{2}  +  { \beta }^{2}

 ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄

\underline{ \red{ \rm SOLUTION \: \: : }}

the values of a,b,c in the given polynomial are :

a = 2 , b = -4 , c = 5

Method 1 :

by using,

 \boxed{  \orange\ast \:  \:  \boxed{ \boxed{ \green{ \rm  { \alpha }^{2}  +  { \beta }^{2}  =  {( \alpha  +  \beta )}^{2}  - 2( \alpha  \beta )}}}}

we obtain,

 \rm⇒ \:  \: ( 2 ) ^{2}   -  \cancel2(  \frac{5}{ \cancel2} )

 \rm⇒ \:  \: 4 - 5

 \bf ⇒ \:  \:  - 1

 ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄

Method 2 :

by using,

 \boxed { \color{darkgreen}{\ast} \:  \:  \boxed{ \boxed{ \rm  {  \orange{{ \alpha }^{2}  +  { \beta }^{2}  =  \frac{ {b}^{2}  - 2ac}{ {a}^{2} } }}}}}

we obtain,

 \rm⇒ \:  \:  \frac{16 - 2(2)(5)}{4}

 \rm⇒ \:  \:  \frac{16 - 20}{4}

  \bf ⇒ \:  \:  - 1

 \color{gold} ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄

Similar questions