Math, asked by ayeshaz4hid, 16 days ago

quadratic equation
completing square
x^2-11x-7=0
step-by-step

Answers

Answered by ashishks1912
1

Given :

A quadratic equation x^{2} -11x-7.

To find :

The zeroes of the quadratic equation.

Step-by-step explanation:

  • We can complete the square by following these steps.
  • Formula we're going to use this.

       -b ± \frac{\sqrt{b^{2} -4ac}}{2a}

  • a is the co efficient of x^{2}, b is the co efficient of x, c is the constant.

      a = 1,b=-11,c=-7

  • Substitute these values in the equation.

       -(-11) ± \frac{\sqrt{(11)^{2}-4(1)(-7) }}{2(1)}

  • Remove the brackets.

       11 ± \sqrt{\frac{121+28}{2}}

  • Sum the values

       11 ± \sqrt{\frac{149}{2}}

  • Divide the values.

       11 ± \sqrt{74.5}

  • Root \sqrt{74.5} is 8.6
  • There are two values because of ±
  • The two values will be

       11+8.6,11-8.6

  • Sum and subtract the values.

       19.6,2.4

Final answer :

The zeroes of the quadratic equation are 19.6,2.4

Similar questions