quadratic equation .Previous year IIT jee Question
Chapter :- complex number and quadratic equation
Answers
EXPLANATION.
One roots of the quadratic equation.
(a² - 5a + 3)x² + (3a - 1)x + 2 = 0. is twice larger than other.
As we know that,
Let one roots be = α.
Other roots be = β = 2α.
Sum of the zeroes of quadratic polynomial.
⇒ α + β = - b/a.
⇒ α + 2α = - (3a - 1)/(a² - 5a + 3).
⇒ 3α = - (3a - 1)/(a² - 5a + 3). - - - - - (1).
Products of the zeroes of the quadratic polynomial.
⇒ αβ = c/a.
⇒ (α)(2α) = (2)/(a² - 5a + 3).
⇒ 2α² = (2)/(a² - 5a + 3). - - - - - (2).
Squaring equation (1), we get.
⇒ (3α)² = - (3a - 1²)/(a² - 5a + 3)². - - - - - (1).
⇒ 9α² = - (3a - 1)/(a² - 5a + 3)². - - - - - (1).
Divide equation (1) & (2), we get.
⇒ 9α²/2α² = -(3a - 1)²/(a² - 5a + 3)² x (a² - 5a + 3)/(2).
⇒ 9/2 = -(3a - 1)²/(2)(a² - 5a + 3).
⇒ 9 = -(3a - 1)²/(a² - 5a + 3).
⇒ 9(a² - 5a + 3) = - (3a - 1)².
⇒ 9a² - 45a + 27 = 9a² + 1 - 6a.
⇒ 9a² - 45a + 27 - 9a² - 1 + 6a = 0.
⇒ - 45a + 6a + 27 - 1 = 0.
⇒ - 39a + 26 = 0.
⇒ 39a = 26.
⇒ a = 26/39.
⇒ a = 2/3.
Option [A] is correct answer.
Answer:
Option (a) 2/3
Step-by-step explanation:
Since , One root of the quadratic equation
(a² - 5a + 3 ) x² + (3a - 1) x + 2 = 0 is twice as large as the other , Then let their roots be α and 2α
∵ sum of roots of a quadratic polynomial =α+β = cofficient of x / cofficient of x² = - b/a
- ∴ 3α = - (3a - 1 )/ (a² - 5a + 3 )
- α = - (3α - 1 ) / 3(a² - 5a + 3 ____(1)
∵ product of roots of a quadratic polynomila = αβ constant term / cofficient of x² = c/a
- ∴ 2α² = 2/(a²-5a+3)
- α² = 1/(a²-5a+3) _______(2)
Put value of α from eqution (1) into the equation (2)
We get,
- →{- (3α-1) / 9(a² - 5a + 3) }²= 1 / a² - 5α + 3
- → (3α - 1) ² / 9(a² - 5a + 3)² = 1/a² - 5a + 3
- → (3a-1)² = 9( a²-5a +3)
- → 9a² - 6a + 1 = 9a² - 45a + 27
- → 45 - 6a = 27 - 1
- → a = 26/39
- → 2/3 Answer