Math, asked by brainlyehsanul, 4 days ago

Quadratic Equation

Solve :

 {9x}^{2}  - 33 \sqrt{3} x + 84 = 0

Answers

Answered by AnIntrovert
1

\sf{{9x}^{2} - 33 \sqrt{3} x + 84 = 0}

\sf\red{According\:to\:the\:quadratic\:formula,\:the\:roots\:of }\sf\red{the\:equation\:are\::}

\sf{x \:  =  \:   \frac{-b \: ±  \sqrt{ {b}^{2} - 4ac } }{2a} }

\sf\red{Here,}

\sf\blue{a\: =\: 9}

\sf\blue{b\: =\: (-33√3)}

\sf\blue{c\: =\: 84}

\sf{x \:  =  \:   \frac{-(-33√3) \: ±  \:\sqrt{ {(-33√3)}^{2} - 4×9×84 } }{2×9} }

\sf{x \:  =  \:   \frac{33√3 \: ±   \:\sqrt{ 3267 - 3024 } }{18} }

\sf{x \:  =  \:   \frac{33√3 \: ±   \:\sqrt{243 } }{18} }

\sf{x \:  =  \:   \frac{33√3 \: ±   \:9\sqrt{3} }{18} }

\sf{x \:  =  \:   \frac{33√3 \: +  \:9\sqrt{3} }{18} = \frac{42√3}{18} }

\sf{x \:  =  \:   \frac{33√3 \: -  \:9\sqrt{3} }{18} = \frac{24√3}{18} }

\tt{So,Roots\:of\:the\:equation\:are =\: \frac{24√3}{18} \: \frac{42√3}{18}}

Attachments:
Similar questions