Math, asked by namithamp8, 10 months ago

QUADRATIC EQUATIONS
4.43
quation (a? + b²) x2 - 2(ac + bd)x +(c^2 + d^2) = 0 are equal, prove that
a/b=c/d​

Answers

Answered by sriarumugam
1

We have

(a  {}^{2} +  \: b {}^{2} ) \: x {}^{2}  \:  \ - 2 (ac  +  bd) \: x +   \\ \\ (c {}^{2}  \: d  {}^{2} \: ) = 0

Compare with

ax {}^{2}  + bx + c = 0

a = (a {}^{2}  +  \: b {}^{2} )

b =  - 2(ac \ + bd)

c  =  (c  {}^{2}  +  d {}^{2} )

if roots are equal

d =  \: b {}^{2}  - 4ac \: or \: b {}^{2}  = 4ac

 - 2(ac  + bd ) {}^{2} \:  =  \:( a  { }^{2}  + b  {}^{2}) +  \\(  c  {}^{2} +  d {}^{2} )

a {}^{2} c { }^{2}  +  2acd +  b {}^{2} d  {}^{2}   =  4(a {}^{2} c  {}^{2}  \\ +  \: a {}^{2} d  {}^{2} \: b {}^{2} c {}^{2}  \: b {}^{2} d {}^{2} )

2acd \:  = a {}^{2} d  {}^{2}  + b {}^{2} c {}^{2}

0 = a {}^{2} d  {}^{2} - 2abcd  + b {}^{2} c {}^{2}

0 = (ad - bc) {}^{2}

0 = ad = bc

ad = bc

a \div b = c \div d

hence \: proved

HOPE IT HELPS U

Similar questions