Quadratic equations- Solve in the factorisation method :- x/x+1+x+1/x=34/15 Don't give unnecessary answers and please don't spam.
Answers
The values of “x” from the given equation are \bold{\frac{3}{2},-\frac{5}{2}}.
Given:
\frac{x}{x+1}+\frac{x+1}{x}=\frac{34}{15}
For solving the given equation,
x^{2}+\left(\frac{x+1 )^{2}}{x(x+1)}\right)=\frac{34}{15}
\frac{x^{2}+2 x^{2}+1+2 x}{x^{2}+x}=\frac{34}{15}
15\left(2 x^{2}+1+2 x\right)=34\left(x^{2}+x\right)
30 x^{2}+15+30 x=34 x^{2}+34 x
4 x^{2}+4 x-15=0
To find the roots in the quadratic equation which is in the form of a x^{2}+b x-c=0
By using the below formula, we can find the roots
=-b \pm \frac{\left(\sqrt{b^{2}+4 a c}\right)}{2 a},
By solving the equation to find the roots are
X=-4 \pm \frac{\left(\sqrt{\left(4^{2}+(4 \times 4 \times 15)\right.}\right)}{2 \times 4}
=-4 \pm \frac{(\sqrt{(16+240)})}{8}
=-4 \pm \frac{\sqrt{256}}{8}
=-4 \pm \frac{16}{8}
=-4+\frac{16}{8},-4-\frac{16}{8}
There are two roots totally, one is positive and another one is positive.
\begin{array}{c}{=\frac{12}{8},-\frac{20}{8}} \\ \\{=\frac{3}{2},-\frac{5}{2}}\end{array}
pls add brainlist
Answer:
Given
x/x+1+x+1/x =34/15 , x not equals to 0 , x not equals to -1 .
⇒ x^2+ (x+1)^2/ x (x+1) = 34/15
⇒34x^2+34x^2 =15x^2+15x^2+30x+15
⇒4x^2 +4x−15=0
⇒2x(2x+5)−3(2x+5)=0
⇒2x−3=0 or 2x+5=0
⇒x= 3/2, x=− 5/2