Math, asked by seezainabbaig, 2 months ago

quadratic formula method



derivation ​

Answers

Answered by charlessummers000
2

Answer:is actually derived using the steps involved in completing the square. It stems from the fact that any quadratic function or equation of the form y = a x 2 + b x + c y = a{x^2} + bx + c y=ax2+bx+c can be solved for its roots.

Step-by-step explanation:

Answered by OoINTROVERToO
25

 \large \pmb{ \bf{ \blue{Derivation  \: of \:  Quadratic  \: Formula}}}

ax² + bx + c = 0

 \tt \: x² + \frac {b}{a} x + \frac {c}{a} = 0 \\   \\ \tt \: x² + \frac{ b}{a} x = \frac{ −c}{a}  \\ \\  \tt \: x²+ \frac {b}{a} x + \frac{b²}{4a²} = \frac {b²}{4a² }− \frac{c}{a } \\  \\  \tt \:{  \bigg(x+ \frac{b}{ 2 a} \bigg) }^{2}  = \frac{  {b}^{2} -  4ac}{4a² }\\  \\ \tt x+ \frac{ b}{2a }= \frac{ ± \sqrt{b²−4ac}}{{2a}}   \\  \\ \tt x =  - \frac{ b}{2a } ±  \frac{\sqrt{b²−4ac}}{{2a}}   \\  \\ \large    \boxed{\red { \bf \: x =   \frac{ - b±\sqrt{ b²−4ac}}{{2a}}}}

Similar questions