Math, asked by jeselali78, 7 months ago

Quadratic inequality x²+6×+5>0

Answers

Answered by Asterinn
4

  \implies  \sf {x}^{2}   + 6x + 5 > 0

Here, 5x + x = 6x and 5x × x = 5x² . Therefore ,

 \implies  \sf {x}^{2}   + 5x + x + 5 > 0

 \implies  \sf {x}(x  + 5) +1( x + 5) > 0

Taking out (x+5) common :-

\implies  \sf( {x + 1})(x  + 5) > 0

Therefore now :-

 \sf \: x  >  - 1

or

 \sf \: x  >  -5

\setlength{\unitlength}{1.1mm}\begin{picture}(50,55)\thicklines\put(33.5,15){\line(1, 0){60}}\put(50,13.5){\line(0,1){3}}\put(75,13.5){\line(0,1){3}}\put(47,9){\sf  - 5}\put(73,9){\sf  - 1}\put(40,18){ \large\sf + }\put(62,18){\large\sf -}\put(84,18){\sf  + }\end{picture}

 \sf \: x  \in ( -  \infty , - 5)   \cup (  - 1 ,\infty )

Answer :

\bf \: x  \in ( -  \infty , - 5)   \cup (  - 1 ,\infty )

Similar questions