Math, asked by hemaprimiya73, 10 months ago

Quadratic polynomial 2x^2 - 3x + 1 has zeroes alpha and beeta. Now form a quadratic polynomial whose zeroes are 1/alfa and 1/beeta

Answers

Answered by Cynefin
9

 \huge{ \underline{ \bold{ \star{ \red{ \: Question...}}}}}

☯️Quadratic polynomial 2x^2 - 3x + 1 has zeroes alpha and beeta. Now form a quadratic polynomial whose zeroes are 1/alfa and 1/beta..

 \huge{ \underline{ \bold{ \star{ \red{ \: Answer...}}}}}

Polynomial= x2-3x+2

 \huge{ \underline{ \bold{ \star{ \red{ \: Solution....}}}}}

 :  \large{ \sf{ \implies{let \: p(x) = 2 {x}^{2}  - 3x + 1}}} \\  \\   \large{ \sf{ \star{ \: we \: know \: if \:  \alpha  \: and \:  \beta  \: are \: zeroes \: then}}} \\  \\  \large{ \sf{ \red{ \alpha  +  \beta  =  \frac{ - coefficient \: of \: x}{coefficient \: of \:  {x}^{2} } }}} \\  \\  \large{ \sf{ \red{ \alpha  \beta  =  \frac{constant \: term}{coefficient \: of \:  {x}^{2} } }}} \\  \\  \\   : \large{ \sf{ \implies{ \alpha  +  \beta  =  \frac{ - ( - 3)}{2} }}} =  \frac{3}{2}  \\  \\   : \large{ \sf{ \implies{ \alpha  \beta  =  \frac{1}{2} }}} \\  \\  \\   \large{ \sf{we \: have \: to \: find \: polynomial \: with \: zeroes \:  \frac{1}{ \alpha } and \:  \frac{1}{ \beta } }} \\  \\  \large{ \sf{ \mapsto{ \purple{u \: must \: know..for \: a \: polynomial}}}} \\  \\  \large{ \sf{ \boxed{ \bold{ \green{ {x}^{2}  - (sum \: of \: zeroes)x + product \: of \: zeroes}}}}} \\  \\  \\  \large{ \sf{ \mapsto{ \purple{by \: using \: this \: formula..}}}} \\  \\  :  \large{ \sf{ \implies{polynomial =  {x}^{2}  - ( \frac{1}{ \alpha }  +  \frac{1}{ \beta } ) +  \frac{1}{ \alpha }  \times  \frac{1}{ \beta } }}} \\  \\  \large{ \sf{ =  {x}^{2}  - ( \frac{ \alpha  +  \beta }{ \alpha  \beta })x  +  \frac{1}{ \alpha  \beta } }} \\  \\  \large{ \sf{ \green{putting \: values \: of \:  \alpha  +  \beta  \: and \:  \alpha  \beta }}} \\  \\  \large{ \sf{ =  {x}^{2}  - ( \frac{ \frac{3}{ \cancel{2}} }{ \frac{1}{ \cancel{2}} } )x +  \frac{1}{ \frac{1}{2} } }} \\  \\  \large{ \sf{ \boxed{ \red{  =  {x}^{2}   - 3x + 2}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

 \large{ \bold{ \underline{ \pink{required \: polynomial \: is \:  {x}^{2}  - 3x + 2}}}}

 \large{ \underline{ \bold{ \star{ \color{blue}{lets \: know \: more...}}}}} \\

✒The zero of the polynomial is defined as any real value of x, for which the value of the polynomial becomes zero. A real number k is a zero of a polynomial p(x), if p(k) = 0.

Similar questions