Math, asked by umeshbhaisa, 5 months ago

quadratic polynomial 4x²+12x+9 has zeroes as alpha and bita is now form a quadratic polynomial whose zeroes are alpha-1 and bita-1​

Answers

Answered by yramashankar751
1

Answer:

Hear giving equation 4x²+12x+9

then zeroes of polynomial write

(x+1)(x+1)=x²+1

after all zeroes polynomial division by equation

then you can easily answer

Answered by ILLUSTRIOUS27
0

Given

  •  \bf \: 4 {x}^{2}  + 12x + 9  \: has \: zeroes \: as \:  \alpha \:  and \:  \beta

To Find

  •  \bf \: quadratic \: polynomial \: whose \: zeroes \: are \:  \alpha  - 1 \: and \beta  - 1

Concept used

  •  \bf \:  \alpha  +  \beta  =  \dfrac{ - b}{a}

  •  \bf \:  \alpha  \beta  =  \dfrac{c}{a}
  •  \bf \: required \: equation \\  \bf  k\{{x}^{2}  - (s)x + (p) \}

Solution

For quadratic equation

 \bf \: 4 {x}^{2}  + 12x + 9

  • a=4
  • b=12
  • c=9

 \bf \:  \alpha  +  \beta  =  \dfrac{ - b}{a}  \\  \\  \implies \boxed{  \bf \alpha  +  \beta  =  \frac{ - 12}{4}}  \\  \\  \bf \: and \:  \alpha  \beta  =  \dfrac{c}{a}  \\  \\  \implies \boxed{ \bf  \alpha  \beta  =  \dfrac{9}{4} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

For required quadratic equations

 \bf \: sum(s) =  \alpha  - 1 +  \beta  - 1 \\  \\  \implies \bf \: sum(s) =   \dfrac{ - 12}{4}  - 2 \\  \\ \implies \bf sum(s) =  \dfrac{ - 12 - 8}{4}  \\  \\   \implies  \boxed{\bf sum(s) =  \dfrac{ - 20}{4} } \:  \:  \:  \:  \:  \\  \\  \\  \\  \bf \: product(p) = ( \alpha  - 1)( \beta  - 1) \\  \\  \bf \implies product(p) =  \alpha  \beta   -  ( \alpha  +  \beta ) + 1 \\  \\  \implies \bf product(p) =  \dfrac{9}{4}  +  \dfrac{12}{4}  + 1 \:  \:  \:  \:  \:  \:  \:  \:   \:  \\  \\  \implies \bf \: product(p) =  \dfrac{9 + 12 + 4}{4}  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \bf \implies  \boxed{ \bf \: product(p) =  \dfrac{25}{4} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Required equation

 \bf \: k( {x}^{2}  - (s)x + (p) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \implies \bf \: k( {x}^{2}  +  \dfrac{20}{4}  +  \frac{25}{4} ) \:   \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \implies \bf \: k( \dfrac{4 {x}^{2} + 20 + 25 }{4}  ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \implies \underline{ \boxed{ \huge \bf 4 {x}^{2} + 20 + 25 }} \bf \: is \: the \: required \: equation \\ \bf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: where \: k = 4

Similar questions