Math, asked by ItzFranklinRahul, 5 months ago

Quality Answer ηєє∂є∂
∂σηт ѕραм
⚡⚡⚡​

Attachments:

Answers

Answered by XxItsPriNcexX
9

\huge✎\fbox \orange{QUE} ST  \fbox\green{ION}☟

If A+B+C = π, then P.T. sin2A + sin2B + in2C = 4 sinAsinBsinC.

\huge✍︎\fbox\orange{ÂŇ}\fbox{SW} \fbox\green{ÊŘ}:

Brother your correct answer will be☟

IN STEP-BY-STEP-EXPLANATION:-

\begin{gathered} \sin(2a) + \sin(2b) + \sin(2c) \\ 2\sin( \frac{2a + 2b}{2} ) \cos( \frac{2a - 2b}{2} ) + \sin(2c) \\ 2 \sin(a + b) \cos(a - b) + \sin(2c) \\ a + b + c = 180 \\ a + b = 180 - c \\ 2 \sin(180 - c) \cos(a - b) + \sin(2c) \\ 2 \sin(c) \cos(a - b) + 2 \sin(c) \cos(c) \\ 2 \sin(c) ( \cos(a - b) + \cos(c) ) \\ 2 \sin(c) \times 2 \cos( \frac{a - b + c}{2} ) \cos( \frac{a - b - c}{2} ) \\ 4 \sin(c) \times \cos( \frac{a +c - b}{2} ) \times \cos( \frac{a - (b + c)}{2} ) \\ 4 \sin(c) \times \cos(90 - b ) \times \cos(90 - a) \\ 4 \sin(c) \times \sin(b) \times \sin(a)\end{gathered}

So Now it is Proved.

 \footnotesize\bold\red{\overbrace{\underbrace \mathbb\blue{Please \:  Mark \:  As \:  The \:  Brainliest\: If\: It\: Satisfied\:You}}}

꧁Hopes so that this will help you,꧂

♥️With Love♥️

✌︎Thanking you, your one of the Brother of your 130 Crore Indian Brothers and Sisters.✌︎

⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⠛⠋⠉⠀⠀⠀⠀⠉⠉⠛⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿

⣿⣿⣿⣿⣿⣿⣿⠟⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣿⣿⣿⣿⣿⣿⣿

⣿⣿⣿⣿⣿⣿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⢿⣿⣿⣿⣿⣿

⣿⣿⣿⣿⣿⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣠⣆⠀⠀⠀⠈⣿⣿⣿⣿⣿

⣿⣿⣿⣿⡿⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣸⣿⣿⡏⠀⠀⠀⠀⢹⣿⣿⣿⣿

⣿⣿⣿⣿⡇⠀⠀⠀⠀⠀⣠⣤⣤⣤⣴⣶⣾⣿⣿⣿⠀⠀⠀⠀⠀⢸⣿⣿⣿⣿

⣿⣿⣿⣿⣧⠀⠀⠀⣠⣾⣿⣿⣿⣿⣿⣿⣿⣿⡿⠁⠀⠀⠀⠀⠀⣸⣿⣿⣿⣿

⣿⣿⣿⣿⣿⡄⣴⠾⠟⢛⣿⡿⠋⠙⠛⠛⢿⡟⠀⠀⠀⠀⠀⠀⢀⣿⣿⣿⣿⣿

⣿⣿⣿⣿⣿⣿⣄⠀⣴⣿⠋⠀⠀⠀⠀⠀⣿⠇⠀⠀⠀⠀⠀⢠⣾⣿⣿⣿⣿⣿

⣿⣿⣿⣿⣿⣿⣿⣦⣿⣿⣶⣶⣶⣶⣶⣶⣿⣷⣶⣦⣤⣾⣿⣿⣿⣿⣿⣿⣿⣿

⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿

\large\red{\underbrace{\overbrace\mathbb{\colorbox{aqua}{\colorbox{blue}{\colorbox{purple}{\colorbox{pink}{\colorbox{green}{\colorbox{gold}{\colorbox{silver}{\textit{\purple{\underline{\red{《❀PŘÎ᭄ŇCĒ✿》࿐}}}}}}}}}}}}}}

Answered by kanishkagupta1234
5

Answer:

sin(

2

2a+2b

)cos(

2

2a−2b

)+sin(2c)

2sin(a+b)cos(a−b)+sin(2c)

a+b+c=180

a+b=180−c

2sin(180−c)cos(a−b)+sin(2c)

2sin(c)cos(a−b)+2sin(c)cos(c)

2sin(c)(cos(a−b)+cos(c))

2sin(c)×2cos(

2

a−b+c

)cos(

2

a−b−c

)

4sin(c)×cos(

2

a+c−b

)×cos(

2

a−(b+c)

)

4sin(c)×cos(90−b)×cos(90−a)

4sin(c)×sin(b)×sin(a)

Similar questions