Math, asked by unknown6838, 7 days ago

quality answer should be given


no spams​

Attachments:

Answers

Answered by Harshala20
0

Distance between two points P(x1,y1) and Q(x2,y2) is given by: d(P, Q) = √ (x2 − x1)2 + (y2 − y1)2 {Distance formula} 2. Distance of a point P(x, y) from the origin is given by d(0,P) = √ x2 + y2. 3. Equation of the x-axis is y = 0 4.

HOPE IT HELPS YOU

PLEASE MARK IT AS BRAINLIEST

Answered by FiercePrince
10

Given that , The two points are ( x₁ , y₁ ) and ( x₂ , y₂ ) and this line is parallel to x – axis .

Need To Find : The Distance between them ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

Let's say that , the two endpoints of line be P( x , y₁ ) & Q( x₂ , y ) .

▪︎ ⠀We know that the Distance between two points ( x₁ , y₁ ) and ( x₂ , y₂ ) is – 

\qquad \star\:\pmb{\underline {\boxed {\sf \: Distance \:=\: \sqrt{ \Bigg( x_2 - x_1 \Bigg)^2 \: +\:\Bigg( y_2 - y_1\:\Bigg)^2}\:\:}}}\:\\\\

⠀⠀⠀⠀⠀⠀ Finding Distance b/w PQ when this line is parallel to x axis

☯︎ Since the Line is Parallel to x axis .

⠀⠀⠀⠀⠀∴ y₁ = y₂

\\\qquad \dag{\underline {\frak { Substituting \:known \:Values \:in \:Formula \::\:}}}\\\\

:\implies \sf AB \:=\: \sqrt{ \Big( x_2 - x_1 \Big)^2 \: +\:\Big( y_2 - y_1\:\Big)^2}\:\:\\\\\\

:\implies \sf AB \:=\: \sqrt{ \Big( x_2 - x_1 \Big)^2 \: +\:\Big( 0\:\Big)^2}\:\qquad \because \:\bigg\lgroup \: y_1 = y_2\bigg\rgroup \\\\\\

:\implies \sf AB \:=\: \sqrt{ \Big( x_2 - x_1 \Big)^2 \: + \: \Big( 0 \Big) }\:\:\\\\\\

:\implies \sf AB \:=\: \sqrt{ \Big( x_2 - x_1 \Big)^2 \:  }\:\:\\\\\\

:\implies \sf AB \:=\: \pm \Big( x_2 - x_1 \Big) \:\:\\\\\\

 :\implies \pmb {\underline {\boxed {\purple {\:\frak{ \:AB\:\:=\: |\:  x_2 - x_1  |\:}}}}}\:\bigstar \: \\\\\\

\:\:\:\therefore \:\underline {\sf  \: Hence ,\:The \:Distance \:b/w \:two \: points \:is\: \pmb{\sf |\:  x_2 - x_1\:  | \:}\:.}\\

Attachments:
Similar questions