Math, asked by sagar24643, 1 month ago

#Quality Answers

#Maths Aryabhatta



If  \: x -  \frac{1}{x} =  \frac{1}{6} \:  \:  \:  \:   then,  {x}^{3}  +  \frac{1}{ {x}^{3} }



No Spam!!


I need help with (b)!!


Once, Again I saying I don't need spam answers.​

Attachments:

Answers

Answered by abhinavmike85
28

\huge{✪}\huge{\underline{\mathcal{Answer}}}

\\

Part 1:

\\

 {x}^{2}  +  \dfrac{1}{ {x}^{2} }  =  {(x -  \dfrac{1}{x}) }^{2}  + 2  \\  \\  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  =   {( \dfrac{1}{6} )}^{2}  + 2 \\  \\  {x}^{2}  +  \frac{1 }{ {x}^{2}  } =  \dfrac{1}{36}  + 2  =  >  \dfrac{1 + 72}{36}  =  >  \dfrac{73}{36}

\\\\

Part 2:

\\

 {(x +  \dfrac{1}{x}) }^{2}  - 2 =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  \\  \\  {(x +  \dfrac{1}{x}) }^{2}  =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2 \\  \\  {(x +  \dfrac{1}{x}) }^{2}  =  \dfrac{73}{36}   + 2 =  > \dfrac{73 + 72}{36}  =  >  \frac{145}{36}  \\  \\ (x +  \dfrac{1}{x} ) =  \sqrt{ \dfrac{145}{36} }  =  >  \dfrac{ \sqrt{145} }{6}

\\

Now we know that,

( {x}^{3}  +  \dfrac{1}{ {x}^{3} } ) = (x +  \dfrac{1}{x} )( {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 1) \\  \\ ( {x}^{3}  +  \dfrac{1}{ {x}^{3} } ) =  \dfrac{ \sqrt{145} }{6}( \dfrac{73}{36}  - 1) \\  \\ ( {x}^{3}  +  \frac{1}{ {x}^{3} } ) =  \dfrac{ \sqrt{145} }{6}  \times  \dfrac{37}{36}   =  >  \frac{37 \sqrt{145} }{216}

\\\\\fbox{\fbox{\fbox{\fbox{\huge{\underline{\underline{\sf{\green{Hope\:it\:helps}}}}}}}}}

Similar questions