Math, asked by llMrsTeddyll, 1 month ago

#Quality Question.
Any Mods, Stars Or Trusted Users, Plz help me out.

Q. Solve This Linear Equation in two Variables.
 \frac{2}{x }  +  \frac{5}{y}  = 1 \\  \frac{60}{x}  +  \frac{40}{y}  = 19

Answers

Answered by Zackary
178

Answer:

\huge \huge \bf {\: \pmb{{Question}}}

Q. Solve This Linear Equation in two Variables.

 \frac{2}{x } + \frac{5}{y} = 1 \\ \frac{60}{x} + \frac{40}{y} = 19

━━━━━━━━━━━━━━━━━━━━━

given that ,

 \frac{2}{x } + \frac{5}{y} = 1 \\ \frac{60}{x} + \frac{40}{y} = 19

is a linear equation

━━━━━━━━━━━━━━━━━━━━━

\huge \huge \bf {\: \pmb{{Answer}}}

 \sf \dashrightarrow\frac{2}{x } + \frac{5}{y} = 1 \:  can \: be \: written \: as  \\ \sf 2a \:  + 5b \:  = 1 \:  \\   \sf \: by \: taking \:  \frac{1}{x} as \:  \color{purple}a   \color{black}\: and \:  \frac{1}{y} as \:\color{purple} b \:  \\ \sf \dashrightarrow\frac{60}{x} + \frac{40}{y} = 19 \: \:  can \: be \: written \: as  \\ \sf 60a \:  + 40b \:  = 19 \:  \\   \sf \: by \: taking \:  \frac{1}{x} as \:  \color{purple}a   \color{black}\: and \:  \frac{1}{y} as \:\color{purple} b

 \sf \: now \: we \: have \: 2a + 5b \:  = 1 \: and  \\  \sf \: 60a \:  + 40b \:  = 19 \\  \sf \: to \: slove \: we \: need \: to \: make \: into \: expression \:  \\ \sf \dashrightarrow   \color{teal}2a + 5b  -  1  = 0\:  \color{tel} -  - (1)\\  \sf\dashrightarrow \:\color{teal} 60a \:  + 40b \:  - 19  = 0 \color{tal}-  - (2)\\  \\

⇢By elimination method

we need to make the first number of equation equal means, multiple 30 in equation (1)

30 ( 2a + 5b - 1 )

= 60a + 150b -30 --- (3)

 \sf 60a + 150b  -  30 = 0\: \\   \sf 60a \:  + 40b \:  - 19  = 0 \  \\  \sf(  - ) \:  \:  \:  \:  \:  \: \: ( - ) \: \:  \:  \:  \:  \: ( + ) \\  \sf  -  -  -  -  -  -  -  -  -  -  -  -  -  \\   \sf \: 0a + 110b \:  - 11 \\  \sf \: b \:  =  \cancel \frac{11}{110}  \\ \sf b \:  =  \color{blue} \frac{1}{10}

now, substituting value of b in equation (1)

 \sf \dashrightarrow2a \:  + 5b \:  - 1 \\   \sf \: 2a \:  + 5( \frac{1}{10} ) = 1 \\ \sf 2a \:  = 1 -  \frac{5}{10}   \\ \sf  \sf \: 2a = 1 -  \frac{1}{2}  \\  \sf \: a \:  =  \frac{1}{2 \times 2}  =  \color{blue} \frac{1}{4}  \\

now we know that value of a = \frac{1}{x}

so, \frac{1}{4} = \frac{1}{x}

by comparison ,

x = 4

we know that value of b = \frac{1}{y}

so, \frac{1}{10} = \frac{1}{y}

by comparison ,

y = 10

hence solved ☑

Similar questions