Math, asked by BrainlyTurtle, 2 months ago

#Quality Question

@ Complex Numbers

Find all non zero complex number z satisfying
 \bar{z} = iz {}^{2}

Answers

Answered by user0888
18

Answer

z=i and z=\pm \dfrac{\sqrt{3} }{2} -\dfrac{1}{2} i.

Solution

Since z is a complex number, let z=a+bi (a,b\in\mathbb{R},\ a,b\neq 0).

\implies \bar{z}=iz^{2}

\implies a-bi=(a^{2}-b^{2})+2abi

Since a,b are real part and imaginary part respectively, we find a system equation with two unknowns:-

\implies \begin{cases} & a=-2ab \ \ \ \ \ ...(1)\\  & -b=a^{2}-b^{2} \ \ \ \ \ ...(2)\end{cases}

To solve this system equation we choose substitution method since the solutions of the first equation can be solved by factorization.

Solving (1), we get,

\implies a(2b+1)=0

\implies a=0\ \text{or}\ b=-\dfrac{1}{2}

Using substitution method on (2), we get,

\implies a=0

\implies b^{2}-b=0

\implies b(b-1)=0

\implies b=0\text{(rej.)}\ \text{or}\ b=1

or,

\implies b=-\dfrac{1}{2}

\implies a^{2}=\dfrac{1}{4} +\dfrac{1}{2}

\implies a^{2}=\dfrac{3}{4}

\implies a=\pm \dfrac{\sqrt{3} }{2}

⇒ The required answers are z=i and z=\pm \dfrac{\sqrt{3} }{2} -\dfrac{1}{2} i.

Advanced problems

Question: Find the value of \sqrt{i}.

Answer: \sqrt{i} =\pm\dfrac{\sqrt{2} }{2} (1+i)

Answer key: Suppose \sqrt{i} as a complex number.

Solution:-

Let z=\sqrt{i}. By definition,

\implies z^{2}=i

Suppose z is a complex number, then

\implies (a+bi)^{2}=i

\implies a^{2}-b^{2}+2abi=i

We are left with a system equation,

\implies \begin{cases} & a^{2}-b^{2}=0 \ \ \ \ \ ...(1)\\  & 2ab=1 \ \ \ \ \ ...(2)\end{cases}

Solving (1) we get,

\implies (a+b)(a-b)=0

\implies a=\pm b

Substitution method on (2) gives,

\implies a=b

\implies 2b^{2}=1

\implies b^{2}=\dfrac{1}{2}

\implies b=\pm\dfrac{\sqrt{2} }{2}

\implies (a,b)=(\pm \dfrac{\sqrt{2} }{2} ,\pm \dfrac{\sqrt{2} }{2} )

or,

\implies a=-b

\implies -2b^{2}=1>0

Since b is the imaginary part, the solution doesn't exist in this case.

Therefore the two square roots of i are \sqrt{i} =\pm \dfrac{\sqrt{2} }{2} (1+i).

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\:\bar{z} = i {z}^{2}

On multiply both sides by 'i', we get

\rm :\longmapsto\:i \: \bar{z} =  {i}^{2}  {z}^{2}

\rm :\longmapsto\:i \: \bar{z} =   -   {z}^{2}  \:  \:  \: \:  \:  \:   \:  \purple {\{ \because \:  {i}^{2}  =  - 1 \}}

\rm :\longmapsto\: -  \: i \: \bar{z} =   {z}^{2}  \:  \:  \: \:  \:  \:  -  -  - (1)

Since, z is a non zero complex number, so let assume that

\rm :\longmapsto\:z = x + iy -  -  - (2)

where x and y are non - zero real numbers.

So, on substituting the values, we get

\rm :\longmapsto\: -  \: i \:  \: (\overline{x + iy}) =  {(x + iy)}^{2}

We know,

\boxed{ \sf{ \:z = x + iy \:  \: then \: \bar{z} = x - iy}}

and

\boxed{ \sf{ \: {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy}}

So using this,

\rm :\longmapsto\: -  \: i(x - iy) =  {x}^{2} +  {i}^{2} {y}^{2} + 2xyi

\rm :\longmapsto\: - ix  + {i}^{2}y =  {x}^{2}  -  {y}^{2}  + 2xyi

\rm :\longmapsto\: - ix   - y =  {x}^{2}  -  {y}^{2}  + 2xyi

\rm :\longmapsto\:  - y- ix =  {x}^{2}  -  {y}^{2}  + 2xyi -  -  - (3)

On comparing Imaginary parts, we get

\rm :\longmapsto\:2xy =  - x

\rm :\longmapsto\:2xy + x = 0

\rm :\longmapsto\:x(2y + 1) = 0

\bf\implies \:y =  - \dfrac{1}{2}  \:  \: or \: x \:  =  \: 0

\bf\implies \:y =  - \dfrac{1}{2} -  -  - (4)

Now, Comparing Real part on both sides, we get

\rm :\longmapsto\: {x}^{2} -  {y}^{2} =  - y

On substituting the value of y, we get

\rm :\longmapsto\: {x}^{2} - \dfrac{1}{4}  = \dfrac{1}{2}

\rm :\longmapsto\: {x}^{2}  =  \dfrac{1}{4} +  \dfrac{1}{2}

\rm :\longmapsto\: {x}^{2}  =  \dfrac{1 + 2}{4}

\rm :\longmapsto\: {x}^{2}  =  \dfrac{3}{4}

\bf\implies \:x \:  =  \:  \pm \:  \sqrt{\dfrac{3}{4} }

\bf\implies \:x \:  =  \:  \pm \:  \dfrac{ \sqrt{3} }{2}

And

when x = 0, we get y = 1 or y = 0 ( rejected otherwise z = 0)

Hence,

The required complex number is

\bf\implies \:z \:  =  \:  \pm \:  \dfrac{ \sqrt{3} }{2}  -  \dfrac{1}{2} i\: or \:z \:= \:i

Additional Information :-

If z is a complex number, then

\boxed{ \sf{ \: |z|  =  |\bar{z}|}}

\boxed{ \sf{ \:z \: \bar{z} \:  =  \:  { |z| }^{2}}}

\boxed{ \sf{ \:z + \bar{z} = 2 \: Re(z)}}

\boxed{ \sf{ \:z  -  \bar{z} = 2 \: i \: Im(z)}}

Also,

\boxed{ \sf{ \: { |z_1 + z_2| }^{2}  +  { |z_1 - z_2| }^{2}  = 2( { |z_1| }^{2}  +  { |z_2| }^{2})}}

Similar questions