Math, asked by BrainlyTurtle, 2 months ago

#Quality Question

@ Derivatives

If
 \bf y = f( {x}^{3} ) \\  \\  \bf z = g( {x}^{5} ) \\  \\  \bf f(x) = tan \: x

Then Find the value of
 \bf \huge \frac{dy}{dz}

Answers

Answered by SparklingBoy
151

Given:

\bf y = f( {x}^{3} ) \\  \\  \bf z = g( {x}^{5} ) \\  \\  \bf f'(x) = tan \: x  \\  \\  \bf g'(x) = sec \: x

___________________________

To Find:

 \huge \sf \frac{dy}{dz}

___________________________

Solution:

 \sf y =  f({x}^{3})   \\  \\  \sf\implies \frac{dy}{dx}  = f'( {x}^{3} ).3 {x}^{2}  \\  \\  \implies  \underline{\boxed{ \bf \frac{dy}{dx}  = 3 {x}^{2} .tan {x}^{3}} } \\    \{\because f' (x ) = tan \: x \}

Also

 \sf z = g(x {}^{5} )  \\  \\  \sf \implies \frac{dz}{dx}  = g'( {x}^{5} ).5 {x}^{4}  \\  \\  \implies \bf    \underline{ \boxed{ \bf\frac{dz}{dx}  = 5 {x}^{4} .sec \:  {x}^{5 }}}\\ \{ \because g'(x) = sec \: x \}

Now,

 \sf \dfrac{dy}{dz}  =   \dfrac{ \frac{dy}{dx} }{ \frac{dz}{dx} }  \\  \\   = \sf  \dfrac{3 {x}^{2}  \: tan  x {}^{3} }{5 {x}^{4}  \: secx {}^{5} }  \\  \\ \large   \red{ \implies  \underline{ \boxed{\bf \frac{dy}{dz}   =  \dfrac{3}{5 {x}^{2} }  \times  \frac{tan {x}^{3} }{sec {x}^{5} } }}}

 \large\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required \:  \:  \text{ A}nswer.}

Answered by NewtonBaba420
113

We Have

  y =  f({x}^{3})   \\  \\  \frac{dy}{dx}  = f'( {x}^{3} ).3 {x}^{2}  \\  \\    \boxed{\boxed{ \bf \frac{dy}{dx}  = 3 {x}^{2} .tan {x}^{3}} }\:\: (GIVEN)

  z = g(x {}^{5} )  \\  \\  \frac{dz}{dx}  = g'( {x}^{5} ).5 {x}^{4}  \\  \\ \bf    \boxed{ \boxed{ \bf\frac{dz}{dx}  = 5 {x}^{4} .sec \:  {x}^{5 }}}\:\:(GIVEN)

Now,

 \dfrac{dy}{dz}  =   \dfrac{ dy/dx}{ dz/dx }  \\  \\   =   \dfrac{3 {x}^{2}  \: tan  x {}^{3} }{5 {x}^{4}  \: secx {}^{5} }  \\  \\ \large {   \colorbox{orange}{ \boxed{\bf \frac{dy}{dz}   =  \dfrac{3}{5 {x}^{2} }  •  \frac{tan {x}^{3} }{sec {x}^{5} } }}}

So this is The final Answer to this question.

Similar questions