Math, asked by BrainlyTurtle, 15 days ago

#Quality Question
@ Integrals

Find Value of
  \huge \bf  \int  cos (log_{e}x)

Answers

Answered by abhradeepde
0

Step-by-step explanation:

Let I=∫cos(lnx)dx

I=cos(lnx)⋅x+∫sin(lnx)dx

cos(lnx)x+[sin(lnx)⋅x−∫cos(lnx)dx]

I= x/2sin(lnx)+cos(lnx)]+C

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle \rm \int cos( log_{e}x) \: dx

Let assume that

\rm :\longmapsto\:I = \displaystyle \rm \int \: cos( log_{e}x) \: dx

We use here method of Substitution,

 \red{\rm :\longmapsto\: \: Put \:  log_{e}(x)  = y}

 \red{\rm :\longmapsto\:x =  {e}^{y}}

 \red{\rm :\longmapsto\:dx =  {e}^{y}dy}

So, given integral can be rewritten as,

\rm :\longmapsto\:I = \displaystyle \rm \int cosy \:  {e}^{y}dy

Now, using by parts, we get

\rm :\longmapsto\:I = \displaystyle \: cosy \rm \int{e}^{y}dy - \displaystyle \rm \int \bigg(\dfrac{d}{dy}cosy\displaystyle \rm \int {e}^{y}dy  \bigg)dy

\boxed{ \because \rm \: \displaystyle \rm \int uv \: dx = u\displaystyle \rm \int vdx - \displaystyle \rm \int \bigg(\dfrac{d}{dx}u\displaystyle \rm \int vdx \bigg) dx}

\rm :\longmapsto\:I = cosy \: {e}^{y} + \displaystyle \rm \int siny \: {e}^{y}dy

Now, again using By Parts, we get

\rm :\longmapsto\:I = cosy \: {e}^{y} +siny \displaystyle \rm \int {e}^{y}dy - \displaystyle \rm \int \bigg(\dfrac{d}{dy}siny\displaystyle \rm \int {e}^{y}dy\bigg) dy

\boxed{ \because \rm \: \displaystyle \rm \int uv \: dx = u\displaystyle \rm \int vdx - \displaystyle \rm \int \bigg(\dfrac{d}{dx}u\displaystyle \rm \int vdx \bigg) dx}

\rm :\longmapsto\:I = {e}^{y}cosy + {e}^{y}siny - \displaystyle \rm \int cosy \: {e}^{y}dy

\rm :\longmapsto\:I = {e}^{y}cosy + {e}^{y}siny - I

\rm :\longmapsto\:2I = {e}^{y}cosy + {e}^{y}siny

\rm :\longmapsto\:I = \dfrac{1}{2}\bigg({e}^{y}cosy + {e}^{y}siny\bigg)  + c

\rm :\longmapsto\:I = \dfrac{{e}^{y}}{2}\bigg(cosy + siny\bigg)  + c

On substituting back the values, we get

\rm :\longmapsto\:I = \dfrac{x}{2}\bigg(cos( log_{e}x)  + sin( log_{e}x) \bigg)  + c

Basic Concept Used :-

Integration by Parts See the rule:

\boxed{ \rm \: \displaystyle \rm \int uv \: dx = u\displaystyle \rm \int vdx - \displaystyle \rm \int \bigg(\dfrac{d}{dx}u\displaystyle \rm \int vdx \bigg) dx}

Where,

u is the function u(x)

v is the function v(x)

u' is the derivative of the function u(x)

For integration by parts , the ILATE rule is used to choose u and v.

where,

I - Inverse trigonometric functions

L -Logarithmic functions

A - Arithmetic and Algebraic functions

T - Trigonometric functions

E- Exponential functions

The alphabet which comes first is choosen as u and other as v.

Similar questions