Math, asked by chaudharykeshav822, 6 days ago

# Quality Question
@ Surface Are And Volumes

A right circular cylinder with base radius 14 cm, height 35 cm​,
Find the volume, CSA, TSA of right circular cylinder.​

Answers

Answered by Anonymous
98

Given :-

  • Radius = 14cm
  • Height = 35cm

To Find :-

  • Volume of a right circular cylinder
  • CSA of a right circular cylinder
  • TSA of a right circular cylinder

Formula Used :-

  • volume = \pi \:  {r}^{2}h
  • TSA =2\pi \: r(h + r)
  • CSA  = 2\pi \: rh

Solution :-

For volume, Substituting the values we get,

 =  >  \frac{22}{7}  \times  ({14})^{2}  \times 35 \\  =  > 22 \times 196 \times 5 \:  \:  \:  \:  \:  \\  =  > 21560 \:  {cm}^{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

For TSA, Substituting the values we get,

 =  > 2 \times  \frac{22}{7}  \times 14(14 + 35) \\  =  > 88  \times 49 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  =  > 4312  \: {cm}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

For CSA, Substituting the values we get,

 =  > 2 \times  \frac{22}{7}  \times  14 \times 35 \\  =  > 88 \times 35  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  =  > 3080  \: {cm}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Therefore :-

  • TSA of the right circular cylinder = 4312 cm²
  • CSA of the right circular cylinder = 3080 cm²
  • Volume of the right circular cylinder = 21560 cm³

________________________________

Hope it helps you mate :)

Answered by SparklingThunder
10

\huge\purple{ \underline{ \boxed{\mathbb{\red{QUESTION : }}}}}

A right circular cylinder has base radius 14 cm, height 35 cm . Find the volume , CSA ( Curved Surface Area ) , TSA ( Total Surface Area ) of right circular cylinder .

\huge\purple{ \underline{ \boxed{\mathbb{\red{ANSWER : }}}}}

  • Volume of cylinder = \sf21560\:{cm}^{3}

  • CSA of cylinder = \sf3080\:{cm}^{2}

  • TSA of cylinder = \sf4312\:{cm}^{2}

\huge\purple{ \underline{ \boxed{\mathbb{\red{EXPLANATION : }}}}}

\green{ \large \underline{ \mathbb{\underline{GIVEN : }}}}

  • Radius of right circular cylinder ( r )= 14 cm

  • Height of right circular cylinder ( h )= 35 cm

 \green{ \large \underline{ \mathbb{\underline{TO  \: FIND : }}}}

  • Volume of right circular cylinder

  • CSA of right circular cylinder

  • TSA of right circular cylinder

 \green{ \large \underline{ \mathbb{\underline{FORMULAS \:  USED: }}}}

 \purple{ \boxed{ \begin{array}{l} \textsf{Volume of cylinder = $ \sf\pi {r}^{2}h $}  \\  \\  \textsf{CSA of cylinder = $\sf2\pi rh $ } \\  \\ \textsf{TSA of cylinder = $\sf2\pi r(h + r) $} \end{array}}}

\green{ \large \underline{ \mathbb{\underline{SOLUTION: }}}}

  \red{ \underline{\underline{\textsf{Volume of cylinder : }}}}

 \displaystyle \longrightarrow \textsf{Volume of cylinder  } \sf = \frac{22}{ \cancel7}   \times  {(14)}^{2}  \times  \cancel{35} { \:  \:  }^{5}  \:  \\  \\ \displaystyle \longrightarrow \textsf{Volume of cylinder  } \sf =22 \times 196 \times 5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \longrightarrow \textsf{Volume of cylinder  } \sf =21560 \:   {cm}^{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:

  \red{ \underline{\underline{\textsf{CSA of cylinder : }}}}

 \displaystyle \longrightarrow \textsf{CSA of cylinder  } \sf = 2 \times  \frac{22}{ \cancel7} \times 14 \times  \cancel{35} { \:  \: }^{5}    \:  \:  \: \:  \\  \\ \displaystyle \longrightarrow \textsf{CSA of cylinder  } \sf = 2 \times 22 \times 14 \times 5\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \longrightarrow \textsf{CSA of cylinder  } \sf =3080 \:   {cm}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:

  \red{ \underline{\underline{\textsf{TSA of cylinder : }}}}

 \displaystyle \longrightarrow \textsf{TSA of cylinder  } \sf = 2 \times  \frac{22}{ \cancel7} \times  \cancel{14} { \:  \: }^{2}   \: (35 + 14)   \:  \:  \: \:  \\  \\ \displaystyle \longrightarrow \textsf{TSA of cylinder  } \sf = 2 \times 22 \times 2 \times 49\:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \longrightarrow \textsf{TSA of cylinder  } \sf =4312 \:   {cm}^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:

 \purple{ \boxed{ \begin{array}{l} \textsf{Volume of cylinder = $ \sf21560 \:  {cm}^{3}  $}  \\  \\  \textsf{CSA of cylinder = $\sf3080 \:  {cm}^{2} $ } \\  \\ \textsf{TSA of cylinder = $\sf4312 \:  {cm}^{2}  $} \end{array}}}

Similar questions