Physics, asked by BrainlyTurtle, 29 days ago

#Quality Question
@Atoms

Q) Derive Formulas of Radius,Speed,Time,Kinetic Energy,Potential Energy and Total Energy of Hydrogen like atom using Bohr model.

(Also write approx values of Radius, Speed and Time) ​

Answers

Answered by SparklingBoy
104

  \large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese ANSWER}}}}

 \mathfrak{Consider  \:  \: an \:  \:  electron  \:  \: revolving } \\  \mathfrak{ in \:  \:  circular  \:  \: orbit \:  \:  of  \:  \: radius  \:  \: \bold r  } \\  \mathfrak{with \:  \:  Speed  \:  \:  \bold v }

  \mathcal{According  \:  \: To }  \\   \large  \maltese \:  \: \underline  \mathfrak{Bohr's \:  \:  1st  \:  \: Postulate }

 \underline\mathcal{ \bigstar \:  \:  F_{centripetal}= F_{electrosatic}} \\  \\  \bf \frac{mv {}^{2} }{r}  =  \frac{1}{4\pi \epsilon \circ}  \frac{(ze)(e)}{ {r}^{2} }  \\  \\   \boxed{ \bf  {} m {v}^{2}  = \frac{1}{4\pi \epsilon \circ}  \frac{z {e}^{2} }{r}  } \:  \:  \:  \:  \: ...(i)

\mathcal{According  \:  \: To }  \\   \large  \maltese \:  \: \underline  \mathfrak{Bohr's \:  \:  2nd \:  \: Postulate }

 \bf L =  \frac{nh}{2\pi}  \\  \\ \sf mvr =  \frac{nh}{2\pi}  \\  \\  \boxed{ \bf v =  \frac{nh}{2\pi mr} } \:  \:  \:  \:  \: ...(ii)

 \mathcal{Putting \:  \:  (ii) \:  \:  in  \:  \: (i)}

 \sf m( \frac{nh}{2\pi mr} ) {}^{2}  =  \frac{1}{4\pi \epsilon \circ}  \frac{ {ze}^{2} }{r}  \\  \\    \pink{ \boxed{ \boxed{ \mathfrak{r =  \frac{ {n}^{2} {h}^{2} \epsilon \circ  }{\pi mz {e}^{2} } }}}} \:  \:  \:  \:  \: ...(iii)

 \mathcal{Putting \:  \:  (iii)  \:  \: in \:  \:  (ii)}

\pink{ \boxed{ \boxed{ \mathfrak{v=  \frac{ {ze}^{2}  }{2nh \epsilon \circ} }}}}

 \huge\mathcal{As}

 \bf T =  \frac{2\pi r}{v} \\  \\  \bf   \qquad \qquad\mathfrak{putting \:  \: both \: values} \\  \\ \pink{ \boxed{ \boxed{ \mathfrak{t =  \frac{4 {n}^{3} {h}^{3}  { \epsilon \circ}^{2}  }{m {z}^{2} {e}^{4}  }  }}}}

  \large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \:  \:  \:  \:  FROM (i)}}}}

 \bf m {v}^{2}  =  \frac{1}{4\pi \epsilon \circ}  \frac{ {ze}^{2} }{r} \\  \\

\pink{ \boxed{ \boxed{ \mathfrak{ Kinetic Energy =  \frac{1}{8\pi \epsilon \circ}  \frac{ {ze}^{2} }{r}   }}}}

 \bf Potential  \: Energy  =  \frac{1}{4\pi \epsilon \circ }  \frac{(ze)( - e)}{r}  \\  \\ \pink{ \boxed{ \boxed{ \mathfrak{ Potential \:  \:  Energy =   - \frac{1}{4\pi \epsilon \circ}  \frac{ {ze}^{2} }{r}   }}}}

 \bf Total \:  Energy = Kinetic \:  Energy \:   + Potential  \: Energy  \\  \\  =   \sf Kinetic  \: Energy - 2( Kinetic \:  Energy ) \\  \\  =  \sf - (Kinetic \:  Energy )

\pink{ \boxed{ \boxed{ \mathfrak{ Total  \: Energy =  -  \frac{1}{8\pi \epsilon \circ}  \frac{ {ze}^{2} }{r}   }}}}

  \large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  \:  \: Approx \:  \:  Values }}}}

\bf \: r = 0.529 \times   \frac{ {n}^{2} }{z}A°  \\  \\ \bf v = 2.18 \times  {10}^{6}  \times  \frac{z}{n} m/s \\  \\  \bf T = 1.53 \times 10 {}^{ - 10}  \times   \frac{{n}^{3} }{ {z}^{2} }second

Answered by NewtonBaba420
22

Answer:

See Attachment And Get your Answer

Attachments:
Similar questions