Math, asked by BrainlyTurtle, 7 hours ago

#Quality Question

@Complex Numbers

Show that the real value of x will satisfy the equation :

 \frac{1 - ix}{1 + ix} =  a - ib
IF

 {a}^{2}  +  {b}^{2}  = 1
a,b€R​

Answers

Answered by SparklingBoy
102

 \blue{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  \:  \: GIVEN \:  \:  \:  \maltese }}}}}

   \frac{1  -   ix}{1 + ix}  =  a - ib\\  \\ \bold{ \mathfrak{ \large{a}^{2}  +  {b}^{2}  = 1}}

 \green{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  \:  \: TO  \:  \: PROVE \:  \:  \:  \maltese }}}}}

 \large\bf{x \: is \: real}

 \red{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  \:  \: SOLUTION \:  \:  \:  \maltese }}}}}

 \frac{1 - ix}{1 + ix}  = a - ib \\  \\  \implies \frac{1 - ix}{1 + ix}  =  \frac{a - ib}{1}

 \huge   \mathfrak{ \text{A}ppl\text{y}ing}\ \  \\ \large  \green{\mathfrak{  \bigstar\:   Componendo \:  \:   \text{A}nd \:  \: Dividendo }}

 \dfrac{(1 + ix) - (1 - ix)}{(1 + ix) + (1 - ix)}  =  \dfrac{1 - (a - ib)}{1 +( a - ib)}  \\  \\  \implies \frac{2ix}{2}  =  \frac{(1  - a) + ib}{(1 + a) - ib}  \\  \\  \implies ix = \frac{(1  - a) + ib}{(1 + a) - ib}   \times \frac{(1   +  a) + ib}{(1 + a)  +  ib}   \\  \\  \implies ix =   \frac{ \{(1 + ib) - a \} \{(1 + ib) + a \}}{( {1 + a)}^{2}  -  {(ib)}^{2} }  \\ \\   \implies ix =  \frac{(1  +  ib) {}^{2}  -  {a}^{2} }{( {1 + a)  {}^{2} +  {b}^{2} } }  \\  \\  \implies ix =  \frac{1 -  {a}^{2} -  {b}^{2}  + 2ib }{ {(1 + a)}^{2} +  {b}^{2}  }

 \\  \\  \implies ix =  \frac{2ib}{ {(1 + a)}^{2} +  {b}^{2}  }  \\  \\  \implies  \green{\boxed{ \boxed{ x =  \frac{2b}{( {1 + a)}^{2}  +  {b}^{2} } }}} \\  \\

 \orange{  \huge\mathfrak{ \text{S}o  \:  \:  \bold {x}  \:  \: is \:  \:  Real}}

Answered by MяMαgıcıαη
89

▬▬▬▬▬▬▬▬▬▬▬▬

\underline{\underline{\sf{\red{Given\::-}}}}

  • \tt \dfrac{1 - ix}{1 + ix} = a - ib

  • \tt a^2 + b^2 = 1

\underline{\underline{\sf{\red{To\:Prove\::-}}}}

  • Value of x is is real !

\underline{\underline{\sf{\red{Proof\::-}}}}

\longrightarrow\quad\tt \dfrac{1 - ix}{1 + ix} = a - ib

★ By componendo and dividendo :-

\longrightarrow\quad\tt \dfrac{(1 + ix) - (1 - ix)}{(1 + ix) + (1 - ix)} = \dfrac{1 - (a - ib)}{1 + (a + ib)}

\longrightarrow\quad\tt \dfrac{2ix}{2} = \dfrac{1 - (a - ib)}{1 + (a + ib)}

\longrightarrow\quad\tt \dfrac{\cancel{2}ix}{\cancel{2}} = \dfrac{1 - (a - ib)}{1 + (a + ib)}

\longrightarrow\quad\tt ix = \dfrac{1 - (a - ib)}{1 + (a + ib)}

\longrightarrow\quad\tt ix = \dfrac{(1 - a) + ib}{(1 + a) - ib}

\longrightarrow\quad\tt ix = \dfrac{(1 - a) + ib}{(1 + a) - ib}\:\times\:\dfrac{(1 + a) + ib}{(1 + a) + ib}

\longrightarrow\quad\tt ix = \dfrac{[(1 + ib) - a]\:[(1 + ib) + a]}{(1 + a)^2 - (ib)^2}

\longrightarrow\quad\tt ix = \dfrac{(1 + ib)^2 - a^2}{(1 + a)^2 - (ib)^2}

\longrightarrow\quad\tt ix = \dfrac{(1 + ib)^2 - a^2}{(1 + a)^2 + b^2}

\longrightarrow\quad\tt ix = \dfrac{1 - a^2 - b^2 + 2ib}{(1 + a)^2 + b^2}\:\:\bigg\lgroup eq^{n}\:(1) \bigg\rgroup

  • If a² + b² = 1 , then [eqⁿ (1)] reduces to :-

\longrightarrow\quad\tt ix = -\dfrac{2ib}{1 + a^2 + b^2}

\longrightarrow\quad\bf{ x = \pink{\dfrac{2ib}{1 + a^2 + b^2}}}

\therefore\:{\underline{\sf{Hence,\:value\:of\:x\:is\:real.}}}

\qquad\qquad\quad\:\:\underline{\underline{\sf{\red{Hence,\:Proved!}}}}

★ Alternative Method :-

\underline{\underline{\sf{\red{Proof\::-}}}}

  • Let us assume that x is real.

\longrightarrow\quad\tt \dfrac{1 - ix}{1 + ix} = a - ib \qquad\qquad\bigg\lgroup Given \bigg \rgroup

\longrightarrow\quad\tt \bigg(\dfrac{1 - ix}{1 + ix}\bigg) = a + ib

On taking conjugate of both sides :-

\longrightarrow\quad\tt \dfrac{1 + ix}{1 - ix} = a + ib\qquad\quad\bigg\lgroup eq^{n}\:(2) \bigg\rgroup

By multiplying [eqⁿ (1)] and [eqⁿ (2)] we get :-

\longrightarrow\quad\tt \dfrac{1 + x^2}{1 + x^2} = a^2 + b^2

\longrightarrow\quad\tt \dfrac{\cancel{1 + x^2}}{\cancel{1 + x^2}} = a^2 + b^2

\longrightarrow\quad{\bf{\purple{a^2 + b^2 = 1}}}

This is true by given condition

Hence,

  • Our assumption that x is real is correct !!

\qquad\qquad\quad\:\:\underline{\underline{\sf{\red{Hence,\:Proved!}}}}

▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions