Math, asked by BrainlyTurtle, 29 days ago

#Quality Question

@Complex Numbers

Solve the equation

2z =  |z|  + 2 i



Answers

Answered by mathdude500
14

\large\underline{\sf{Solution-}}

Since, z is a complex number

Let us assume that z = x + iy

According to statement,

\rm :\longmapsto\:2z =  |z| + 2i

On substituting the value of z, we get

\rm :\longmapsto\:2(x + iy) =  |x + iy| + 2i

We know, that if z = x + iy, then

\rm :\longmapsto\: |z| =  \sqrt{ {x}^{2}  +  {y}^{2} }

On substituting the value, we get

\rm :\longmapsto\:2x + 2iy =  \sqrt{ {x}^{2} +  {y}^{2} } + 2i

On comparing, imaginary parts, we get

\rm :\longmapsto\:2y = 2

\bf\implies \:y = 1

Now, On comparing Real part, we get

\rm :\longmapsto\:2x =  \sqrt{ {x}^{2}  +  {y}^{2} }

On substituting the value of y = 1, we get

\rm :\longmapsto\:2x =  \sqrt{ {x}^{2}  +  {1}^{2} }

\rm :\longmapsto\:2x =  \sqrt{ {x}^{2}  +  1 }

On squaring both sides, we get .

\rm :\longmapsto\: {4x}^{2} =  {x}^{2} + 1

\rm :\longmapsto\: {3x}^{2} =  1

\rm :\longmapsto\: {x}^{2} =   \dfrac{1}{3}

\bf\implies \:x =  \:  \pm \: \dfrac{1}{ \sqrt{3} }

Justification of solution,

When

\bf :\longmapsto\: z = - \: \dfrac{1}{ \sqrt{3} }  + i

Then,

\bf :\longmapsto\: = - \: \dfrac{2}{ \sqrt{3} }  + 2i =  \sqrt{\dfrac{1}{3} + 1 }  + 2i

which is not satisfied as Real part on LHS is negative and Real part is positive.

When

\bf :\longmapsto\: z = \: \dfrac{1}{ \sqrt{3} }  + i

then

\bf :\longmapsto\:  \: \dfrac{2}{ \sqrt{3} }  + 2i =  \sqrt{\dfrac{1}{3} + 1 }  + 2i

Satisfied

Hence,

Solution of

\rm :\longmapsto\:2z =  |z| + 2i

is

\bf :\longmapsto\: z = \: \dfrac{1}{ \sqrt{3} }  + i

Answered by Vikramjeeth
8

*Question:-

Solve the equation :→ 2z = |z| + 2i

*Answer:-

2(x +iy) =  \sqrt{ {x}^{2} +  {y}^{2}  }  + 2i

2x =  \sqrt{ {x}^{2} +  {y}^{2}  }

And,

2y = 2

i.e. ,

y = 1

4 {x}^{2}  =  {x}^{2}  + 1

i.e. ,

 {3x}^{2}   = 1

i.e. ,

x = ± \frac{1}{ \sqrt{3} }  \\

x =  \frac{1}{ \sqrt{3} } \:   \\

Since,

x≥0

Hence,

z =  \frac{1}{ \sqrt{3} }  + i  =  \frac{ \sqrt{3} }{3}  + i \\

Hope it helps you@BrainlyTurtle.

I like your way of writing answers.

Similar questions