Math, asked by BrainlyTurtle, 8 hours ago

#Quality Question
@Continuity

Show that
 \displaystyle\sf f(x) =\begin{cases} \sf x \: sin \dfrac{1}{x} & \text{if } x \neq 0 \\ \\ 0 & \text{if }  \sf x = 0 \end{cases}\  \textless \ br /\  \textgreater \
is continuous at x = 0​

Answers

Answered by SparklingBoy
102

▪Given :-

 \bf f(x) =\begin{cases} \sf x \: sin \dfrac{1}{x} & \text{if } x \neq 0 \\ \\ 0 & \text{if }  \sf x = 0 \end{cases}

To Prove :-

f(x) is continuous at x =  0

___________________________

▪Concept :-

 \sf If \:  \:  \:  f(x) =\begin{cases} \sf x \: sin\dfrac{1}{x} & \text{if } x \neq 0 \\ \\0 & \text{if }  \sf x = 0 \end{cases}

is continuous at x = 0 then

 \sf\lim_{x \to 0}f(x) = f(0) = 0

___________________________

▪Sandwich Theoram :-

If f , g and h are functions such that

f(x) \leqslant g(x) \leqslant h(x)

for all x in some neighborhood of c

and if

 \bf\lim_{x \to c}f(x) = p =  \bf\lim_{x \to c}h(x)

Then,

 \bf\lim_{x \to c}g(x) = p

___________________________

▪Proof :-

We know that

 \sf - 1 \leqslant sin \theta \leqslant 1

So,

 \sf - 1 \leqslant sin \dfrac{1}{x}  \leqslant 1

Mulyiplying by x

 \sf - x \leqslant x \: sin \dfrac{1}{x}   \leqslant x

As

 \sf\lim_{x \to 0 {}^{ - } }( - x) = 0 =  \sf\lim_{x \to 0 {}^{ + } }x

Hence

By Sandwich Theoram

 \bf\lim_{x \to 0}x \: sin \frac{1}{x}  = 0

Hence

 \sf\lim_{x \to 0}f(x) = f(0) = 0

So f(x) is continuous at x = 0 .

Answered by M4l6
82

 \displaystyle\sf f(x) =\begin{cases} \sf x \: sin \dfrac{1}{x} & \text{if } x \neq 0 \\ \\ 0 & \text{if }  \sf x = 0

Similar questions