Math, asked by BrainlyTurtle, 2 months ago

#Quality Question
@Coordinate Geometry

Q》》
Equation of common tangent to circle
 {x}^{2}  +  {y}^{2}  - 6x = 0  \:  \:  and \:  \: parabola \:  \:  \\  {y}^{2} = 4x \:  \:  \bf \: is

Answers

Answered by jeevankishorbabu9985
2

Answer:

 { \bf{ \color{violet}Let \:  equation \:  of \:  tangent \:  to \:  the \:  parabola \:  \:  \:  \: { y }^{2} =4x  \:  \:  \: is}}</p><p>

y=mx+ \frac1m</p><p>

  \sf\green{⇒{m }^{2} x−ym+1=0 \:  is \:  tangent \:  to  { x }^{2} +{y }^{2} −6x=0}</p><p></p><p></p><p>

 \tt \huge \pink{⇒ \frac{∣3{m}^{2} +1∣}{ \sqrt{{m }^{4}+{m }^{2} }}=3}

 \blue{m=±  \frac{1}{ \sqrt31}}</p><p></p><p></p><p>

 \color{cyan} \huge{⇒ tangent \:  are \:  x+ \sqrt3y+3=0</p><p> \:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  x− \sqrt3y+3=0.}</p><p></p><p>

Step-by-step explanation:

pray for me to come over

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given equation of circle is

\rm :\longmapsto\: {x}^{2} +  {y}^{2} - 6x = 0

So, its centre is evaluated as

\rm \:  =  \: \bigg( - \dfrac{1}{2} \: coefficient \: of \: x, \:  - \dfrac{1}{2} \: coefficient \: of \: y \bigg)

\rm \:  =  \: (3, \: 0)

and

Radius is given by

\rm :\longmapsto\: radius, \: r = \sqrt{ {g}^{2}  +  {f}^{2}  - c}

Here, g = - 3, f = 0, c = 0.

So, on substituting the values, we get

\rm :\longmapsto\:radius, \: r =  \sqrt{ {( - 3)}^{2}  +  {0}^{2}  - 0}

\rm :\longmapsto\:radius, \: r =  \sqrt{9}

\rm :\longmapsto\:radius, \: r = 3

Also,

Given equation of Parabola is

\rm :\longmapsto\: {y}^{2} = 4x

We know,

If m is the slope of tangent to the parabola y² = 4ax, then equation of tangent is given by

\rm :\longmapsto\:y = mx + \dfrac{a}{m}

Now, given parabola is y² = 4x, so a = 1.

So, equation of tangent to parabola y² = 4x is

\rm :\longmapsto\:y = mx + \dfrac{1}{m}

\rm :\longmapsto\:y = \dfrac{ {m}^{2}x +  1}{m}

\rm :\longmapsto\:my = x {m}^{2} + 1

\rm :\longmapsto\:x {m}^{2} - my + 1 = 0 -  -  - (1)

For line (1) to be a common tangent to circle,

The perpendicular distance drawn from center (3, 0) on the line xm² - my + 1 = 0, must be equal to radius, i.e = 3.

So, using distance formula between point and line, we get

\rm :\longmapsto\:3 = \dfrac{ |3 {m}^{2}  - 0 + 1| }{ \sqrt{ {( {m}^{2} )}^{2}  +  {( - m)}^{2} } }

\rm :\longmapsto\:3 = \dfrac{ 3 {m}^{2}  + 1}{ \sqrt{ {{m}^{4} }  +  { m}^{2} } }

\rm :\longmapsto\:3 \sqrt{ {m}^{4} +  {m}^{2}  }  =  {3m}^{2}  + 1

On squaring both sides, we get

\rm :\longmapsto\:9( {m}^{4}  +  {m}^{2} ) =  {9m}^{4} + 1 + 6 {m}^{2}

\rm :\longmapsto\:9{m}^{4}  +  9{m}^{2} =  {9m}^{4} + 1 + 6 {m}^{2}

\rm :\longmapsto\: {3m}^{2} = 1

\rm :\longmapsto\: {m}^{2} = \dfrac{1}{3}

\rm :\longmapsto\: {m}=  \:  \pm \: \dfrac{1}{ \sqrt{3} }

So, Equation (1) can be rewritten as

\rm :\longmapsto\:\dfrac{1}{3} x \:  \pm \:  \dfrac{1}{ \sqrt{3} } y + 1 = 0

\rm :\longmapsto\:\dfrac{1}{3} x \:  \pm \:  \dfrac{ \sqrt{3} }{3} y +  \dfrac{1}{3}  = 0

\rm :\longmapsto\:x \:  \pm \:  \sqrt{3}y + 3 = 0

Hence,

The equation of common tangents to

\rm :\longmapsto\: {x}^{2} +  {y}^{2} - 6x = 0

and

\rm :\longmapsto\: {y}^{2} = 4x

is

\bf :\longmapsto\:x \:  \pm \:  \sqrt{3}y + 3 = 0

Attachments:
Similar questions