Math, asked by BrainlyTurtle, 22 days ago

#Quality Question
@Derivatives

 \bf if \: x {}^{y}  = e {}^{x - y}  \\  \\  \bf then \: prove \:  \:  \dfrac{dy}{dx} =  \frac{logx}{( {1 + logx)}^{2} }

Answers

Answered by SparklingBoy
198

▪Question :-

If  \large \bf {x}^{y}  =  {e}^{x - y}

Then Prove That :-

 \bf \dfrac{dy}{dx}  =  \dfrac{log \: x}{(1 +  {log \: x)}^{2} }

___________________________

▪Given :-

\Large \sf  {x}^{y}  = e {}^{x - y}

___________________________

▪To Prove ➽

 \bf  \pink{  \dfrac{dy}{dx} =  \dfrac{log \: x}{(1 +  {log \: x)}^{2} }   }

___________________________

▪ Formulae Used :-

  \bf \maltese \:  \:  \: log \:  {m}^{n}  = n .log \: m \\  \\ \small  \bf \maltese \:  \:  \:  \frac{d}{dx}  \bigg( \frac{f(x)}{g(x)}  \bigg) =  \frac{g(x).f '(x) - f(x).g '(x) }{ \{g(x) { \}}^{2} }  \\  \\  \bf \maltese \:  \:  \: log \: e = 1

___________________________

▪ Proof :-

Given that,

   \large\sf{x}^{y}  =  {e}^{x - y}

Taking log both side we get ,

 \sf log( {x}^{y} )  =  log( {e}^{x - y} )  \\  \\  \sf y. log \: x = (x - y). log \: e  \\  \\  \sf y.log \: x= x - y \\  \\  \sf y \big(log \: x + 1 \big) = x \\  \\   \large \purple{\bf \implies \underline{ \boxed{  \bf y =  \frac{x}{1 +  log \: x} }}}

Differentiating both sides w.r.t x

 \sf \dfrac{dy}{dx}  =  \dfrac{d}{dx}  \bigg(  \dfrac{x}{1 + log \: x} \bigg) \\  \\  \sf =  \dfrac{(1 + log \: x) \frac{dx}{dx} - x \frac{d}{dx} (log \: x) }{ {(1 + log \: x)}^{2} }  \\  \\   \sf =  \frac{(1 + log \: x).1 - x. \frac{1}{x} }{ {(1 + log \: x)}^{2} }  \\  \\  =  \sf  \dfrac{1 + log \: x - 1}{ {(1 +  log \: x)}^{2} }  \\  \\ \Large \purple{ \implies  \underline {\boxed{{\bf  \frac{dy}{dx}  =  \frac{log \: x}{( {1 + log \: x)}^{2} }} }}}

《Hence Proved 》

___________________________

Answered by MrSovereign
65

\Large{\underline{\underline{\bold{✯Given:}}}}

  • \bf{x^{y} = e^{(x-y)}}

\Large{\underline{\underline{\red{\bold{➸\;To\;Prove:}}}}}

  • \bf{\dfrac{d_y}{d_x} = \frac{logx}{( {1 + logx)}^{2} }}

\Large{\underline{\underline{\bold{\color{salmon}๛\; Required\; Response:}}}}

\bf{x^{y} = e^{(x-y)}}

By Taking \bold{log} on both sides

\bf{log\;(x^{y}) = log\;(e^{x-y})}

\pink{\bold{\;log\;(a^{m}) = m\;.log\;a}}

\;\;\;\;\;\;\;\sf{y\;log\;x = (x-y)\;.log\;e}

\pink{\bold{\;log\;e = 1}}

\;\;\;\;\;\;\sf{y\;(log\;x) = x-y}

\;\;\;\;\;\;\sf{y+y\;log\:x = x}

\;\;\;\;\;\;\sf{y(1+log\;x) = x}

\;\;\;\;\;\;\;→\;\Large\bold{y = \frac{x}{1+log\;x}}

On differentiating both sides with respect to x.

→\;\Large{\bf{\frac{d_y}{d_x} = \frac{(1+log\;x)1-x(\frac{1}{x})}{(1+log\;x)²}}}

→\;\Large{\bf{\frac{d_y}{d_x} = \frac{(1+log\;x)-[\cancel{x}×\frac{1}{\cancel{x}}]}{(1+log\;x)²}}}

→\;\Large{\bf{\frac{d_y}{d_x} = \frac{1+log\;x-1}{(1+log\;x)²}}}

→\;\Large{\bf{\frac{d_y}{d_x} = \frac{log\;x}{(1+log\:x)²}}}

Hence Proved,

  • \huge{\blue{\bold{\dfrac{d_y}{d_x} = \frac{log\;x}{( {1 + logx)}^{2} }}}}

\boxed{\tt{@MrSovereign}}

Hope This Helps!!

Similar questions