Math, asked by BrainlyTurtle, 2 months ago

#Quality Question
@Integrals


Find the value of

 \huge \int \frac{dx}{x( {x}^{n} + 1)}

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \int \frac{dx}{x( {x}^{n}  + 1)} \\

 =  \int \frac{( {x}^{n} + 1 -  {x}^{n})  dx}{x( {x}^{n}  + 1)} \\

 =  \int \frac{( {x}^{n} + 1)  dx}{x( {x}^{n}  + 1)} -  \int \frac{ {x}^{n} dx}{x( {x}^{n} + 1) }  \\

 =  \int \frac{  dx}{x} -  \int \frac{ {x}^{n - 1} dx}{( {x}^{n} + 1) }  \\

 =  ln |x|  -  ln | {x}^{n}  + 1|  + C

 =  ln | \frac{x}{ {x}^{n}  + 1 }|   + C \\

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\int\rm \dfrac{dx}{x( {x}^{n}  + 1)}

\rm \:  =  \:  \:\displaystyle\int\rm \dfrac{dx}{x. {x }^{n}(1 +  {x}^{ - n}) }

\rm \:  =  \:  \:\displaystyle\int\rm \dfrac{dx}{ {x }^{n + 1}(1 +  {x}^{ - n}) }

\rm \:  =  \:  \:\displaystyle\int\rm \dfrac{ {x}^{ - (n + 1)} }{1 +  {x}^{ - n} }dx

Now, to integrate such integral, we use method of Substitution.

 \red{\rm :\longmapsto\:Put \:1 +   {x}^{ - n}  = y}

 \red{\rm :\longmapsto\: - n {x}^{ - n - 1} dx = dy}

 \red{\rm :\longmapsto\: {x}^{ - n - 1} dx =  -  \dfrac{dy}{n} }

On substituting all these values, we get

\rm \:  =  \:  \: - \dfrac{1}{n}\displaystyle\int\rm \dfrac{dy}{y}

We know,

\boxed{ \sf{ \:\displaystyle\int\rm  \frac{1}{x}dx = logx + c}}

\rm \:  =  \:  \: -  \: \dfrac{1}{n} \:  log(y)  + c

\rm \:  =  \:  \: -  \: \dfrac{1}{n} \:  log(1 +  {x}^{ - n} )  + c

\rm \:  =  \:  -  \:  \dfrac{1}{n}log\bigg |\dfrac{ {x}^{n}  + 1}{ {x}^{n} } \bigg| + c

\rm \:  =  \:  \:  \dfrac{1}{n}log\bigg |\dfrac{ {x}^{n} }{ {x}^{n}  + 1} \bigg| + c

Alternative Method

\rm :\longmapsto\:\displaystyle\int\rm \dfrac{dx}{x( {x}^{n}  + 1)}

 \purple{\bf :\longmapsto\:Multiply \: and \: divide \: by \:  {nx}^{n - 1}}

\rm \:  =  \:  \:\displaystyle\int\rm \dfrac{n {x}^{n - 1} }{{nx }^{n - 1}.x.({x}^{n} + 1) } dx

\rm \:  =  \:  \:\displaystyle\int\rm \dfrac{n {x}^{n - 1} }{{nx }^{n}.({x}^{n} + 1) } dx

 \red{\rm :\longmapsto\:Put \:{x}^{n}  = y}

 \red{\rm :\longmapsto\:n {x}^{n - 1} dx = dy}

On substituting the values, we get

\rm \:  =  \:  \:  \dfrac{1}{n}\displaystyle\int\rm \dfrac{dy}{y(y + 1)}

\rm \:  =  \:  \:  \dfrac{1}{n}\displaystyle\int\rm \dfrac{1}{y(y + 1)}dy

\rm \:  =  \:  \:  \dfrac{1}{n}\displaystyle\int\rm \dfrac{1 + y - y}{y(y + 1)}dy

\rm \:  =  \:  \:  \dfrac{1}{n}\displaystyle\int\rm \dfrac{1 + y }{y(y + 1)}dy - \dfrac{1}{n}\displaystyle\int\rm \dfrac{y}{y(y + 1)}dy

\rm \:  =  \:  \:  \dfrac{1}{n}\displaystyle\int\rm \dfrac{1}{y}dy - \dfrac{1}{n}\displaystyle\int\rm \dfrac{1}{y + 1}dy

\rm \:  =  \:  \:  \dfrac{1}{n} log(y)  - \dfrac{1}{n} log(y + 1)  + c

\rm \:  =  \:  \:  \dfrac{1}{n} log( {x}^{n} )  - \dfrac{1}{n} log( {x}^{n}  + 1)  + c

\rm \:  =  \:  \:  \dfrac{1}{n}log\bigg |\dfrac{ {x}^{n} }{ {x}^{n}  + 1} \bigg| + c

Properties used :-

\rm :\longmapsto\: log( {x}^{y} ) = y \: logx

\rm :\longmapsto\:log\bigg |\dfrac{y}{x} \bigg| = logy - logx

\rm :\longmapsto\: {x}^{m} \times  {x}^{n} =  {x}^{m + n}

\rm :\longmapsto\: {x}^{ - n} = \dfrac{1}{ {x}^{n} }

Similar questions